LLM之Agent(四)| AgentGPT:一个在浏览器运行的Agent

AgentGPT是一个自主人工智能Agent平台,用户只需要为Agent指定一个名称和目标,就可以在浏览器中链接大型语言模型(如GPT-4)来创建和部署Agent平台。

PS:目前agentGPT仅支持chatgpt模型,暂时不支持本地llm模型,不过可以参考代码model_factory.py#L37和agent_service_provider.py#L18,修改此处,添加本地模型的调用接口。

一、AgentGPT功能列表

  • 代码协助:AgentGPT可以充当编程助手,帮助调试代码、生成代码片段,甚至提供编码教程;
  • 研究和内容生成:从撰写博客文章和撰写文章,到编写学习指南和摘要,AgentGPT可以简化多个领域的内容创建;
  • 电子邮件和通信:写一封电子邮件或精心制作一条完美的信息可能很耗时。使用AgentGPT,您可以自动化此过程。它可以帮助生成电子邮件、起草消息,并帮助进行其他形式的沟通;
  • 市场营销和广告:AgentGPT可用于产生创新的营销理念,创建引人注目的广告文案,并帮助制定SEO策略;
  • 预算编制和财务规划:AgentGPT可以提供预算建议、财务管理技巧,甚至可以根据用户定义的标准创建个人财务计划。

二、AgentGPT安装

2.1 需要提前安装好如下工具

2.2 使用Docker安装AgentGPT(推荐)

PS:需要提前安装好Docker

对于Mac、Linux系统,安装如下:

git clone https://github.com/reworkd/AgentGPT.gitcd AgentGPT./setup.sh

对于Window系统,安装如下:

git clone https://github.com/reworkd/AgentGPT.gitcd AgentGPT./setup.bat

所有服务启动后,可以在浏览器输入http://localhost:3000即可

2.3 不 使用Docker安装AgentGPT

不使用Docker,用户需要使用setup.sh配置ENV,同时需要更新Prisma配置文件以指向本地SQLite实例。

接下来,需要配置Next.js,代码如下:

// Frontendcd ./nextnpm installnpm run dev

在另一个窗口中,运行以下程序来启动后端:

// Backend. Make sure you are at the root of the projectcd ./platformpoetry installpoetry run python -m reworkd_platform

所有服务启动后,可以在浏览器输入http://localhost:3000即可

三、AgentGPT效果测试

我们以获取paperwithcode网站最新目标检测的sota算法为例进行测试AgentGPT效果。

3.1 打开agentgpt网站,输入任务

输入对应的任务"Get the latest sota models on the paper with code website about object detection on coco dataset"。

可利用的默认工具,如下图所示:

3.2 任务分解

进入网站->导航到目标检测部分->过滤COCO数据集相关的模型->对这些模型进行排序

3.3 导航到目标检测部分

3.4 过滤COCO数据集相关的模型

3.5 对这些模型进行排序

3.6 总结

参考文献:

[1] https://agentgpt.reworkd.ai/zh

[2] https://github.com/reworkd/AgentGPT

[3] https://docs.reworkd.ai/introduction

[4] https://mp.weixin.qq.com/s/YkwI01yLydO2QjGGIzvBHQ

相关推荐
qzhqbb1 小时前
基于统计方法的语言模型
人工智能·语言模型·easyui
冷眼看人间恩怨2 小时前
【话题讨论】AI大模型重塑软件开发:定义、应用、优势与挑战
人工智能·ai编程·软件开发
2401_883041082 小时前
新锐品牌电商代运营公司都有哪些?
大数据·人工智能
AI极客菌3 小时前
Controlnet作者新作IC-light V2:基于FLUX训练,支持处理风格化图像,细节远高于SD1.5。
人工智能·计算机视觉·ai作画·stable diffusion·aigc·flux·人工智能作画
阿_旭3 小时前
一文读懂| 自注意力与交叉注意力机制在计算机视觉中作用与基本原理
人工智能·深度学习·计算机视觉·cross-attention·self-attention
王哈哈^_^3 小时前
【数据集】【YOLO】【目标检测】交通事故识别数据集 8939 张,YOLO道路事故目标检测实战训练教程!
前端·人工智能·深度学习·yolo·目标检测·计算机视觉·pyqt
Power20246664 小时前
NLP论文速读|LongReward:基于AI反馈来提升长上下文大语言模型
人工智能·深度学习·机器学习·自然语言处理·nlp
数据猎手小k4 小时前
AIDOVECL数据集:包含超过15000张AI生成的车辆图像数据集,目的解决旨在解决眼水平分类和定位问题。
人工智能·分类·数据挖掘
好奇龙猫4 小时前
【学习AI-相关路程-mnist手写数字分类-win-硬件:windows-自我学习AI-实验步骤-全连接神经网络(BPnetwork)-操作流程(3) 】
人工智能·算法
沉下心来学鲁班4 小时前
复现LLM:带你从零认识语言模型
人工智能·语言模型