LLM之Agent(四)| AgentGPT:一个在浏览器运行的Agent

AgentGPT是一个自主人工智能Agent平台,用户只需要为Agent指定一个名称和目标,就可以在浏览器中链接大型语言模型(如GPT-4)来创建和部署Agent平台。

PS:目前agentGPT仅支持chatgpt模型,暂时不支持本地llm模型,不过可以参考代码model_factory.py#L37和agent_service_provider.py#L18,修改此处,添加本地模型的调用接口。

一、AgentGPT功能列表

  • 代码协助:AgentGPT可以充当编程助手,帮助调试代码、生成代码片段,甚至提供编码教程;
  • 研究和内容生成:从撰写博客文章和撰写文章,到编写学习指南和摘要,AgentGPT可以简化多个领域的内容创建;
  • 电子邮件和通信:写一封电子邮件或精心制作一条完美的信息可能很耗时。使用AgentGPT,您可以自动化此过程。它可以帮助生成电子邮件、起草消息,并帮助进行其他形式的沟通;
  • 市场营销和广告:AgentGPT可用于产生创新的营销理念,创建引人注目的广告文案,并帮助制定SEO策略;
  • 预算编制和财务规划:AgentGPT可以提供预算建议、财务管理技巧,甚至可以根据用户定义的标准创建个人财务计划。

二、AgentGPT安装

2.1 需要提前安装好如下工具

2.2 使用Docker安装AgentGPT(推荐)

PS:需要提前安装好Docker

对于Mac、Linux系统,安装如下:

复制代码
git clone https://github.com/reworkd/AgentGPT.gitcd AgentGPT./setup.sh

对于Window系统,安装如下:

复制代码
git clone https://github.com/reworkd/AgentGPT.gitcd AgentGPT./setup.bat

所有服务启动后,可以在浏览器输入http://localhost:3000即可

2.3 不 使用Docker安装AgentGPT

不使用Docker,用户需要使用setup.sh配置ENV,同时需要更新Prisma配置文件以指向本地SQLite实例。

接下来,需要配置Next.js,代码如下:

复制代码
// Frontendcd ./nextnpm installnpm run dev

在另一个窗口中,运行以下程序来启动后端:

复制代码
// Backend. Make sure you are at the root of the projectcd ./platformpoetry installpoetry run python -m reworkd_platform

所有服务启动后,可以在浏览器输入http://localhost:3000即可

三、AgentGPT效果测试

我们以获取paperwithcode网站最新目标检测的sota算法为例进行测试AgentGPT效果。

3.1 打开agentgpt网站,输入任务

输入对应的任务"Get the latest sota models on the paper with code website about object detection on coco dataset"。

可利用的默认工具,如下图所示:

3.2 任务分解

进入网站->导航到目标检测部分->过滤COCO数据集相关的模型->对这些模型进行排序

3.3 导航到目标检测部分

3.4 过滤COCO数据集相关的模型

3.5 对这些模型进行排序

3.6 总结

参考文献:

1\] https://agentgpt.reworkd.ai/zh \[2\] https://github.com/reworkd/AgentGPT \[3\] https://docs.reworkd.ai/introduction \[4\] https://mp.weixin.qq.com/s/YkwI01yLydO2QjGGIzvBHQ

相关推荐
Lethehong3 分钟前
探索高效工作流的秘密:GLM-4.7 与 Dify 平台深度集成实践
大数据·人工智能·算法
Yeats_Liao5 分钟前
微调决策树:何时使用Prompt Engineering,何时选择Fine-tuning?
前端·人工智能·深度学习·算法·决策树·机器学习·prompt
传说故事5 分钟前
【论文自动阅读】GREAT MARCH 100:100项细节导向任务用于评估具身AI agent
人工智能·具身智能
李昊哲小课9 分钟前
基于NLP的检索式聊天机器人
人工智能·自然语言处理·机器人
听麟11 分钟前
HarmonyOS 6.0+ PC端智能监控助手开发实战:摄像头联动与异常行为识别落地
人工智能·深度学习·华为·harmonyos
wasp52014 分钟前
【开源】Banana Slide:一个基于nano banana pro[特殊字符]的原生AI PPT生成应用,迈向真正的"Vibe PPT"
人工智能·开源
说私域15 分钟前
破局互联网产品开发困境:开源AI智能名片链动2+1模式S2B2C商城小程序的实践与启示
人工智能·小程序·开源·私域运营
开源技术1 小时前
深入了解Turso,这个“用Rust重写的SQLite”
人工智能·python
初恋叫萱萱1 小时前
构建高性能生成式AI应用:基于Rust Axum与蓝耘DeepSeek-V3.2大模型服务的全栈开发实战
开发语言·人工智能·rust
水如烟8 小时前
孤能子视角:“组织行为学–组织文化“
人工智能