自然语言处理阅读第一弹

Transformer架构

Embeddings from Language Model (ELMO)

Bidirectional Encoder Representations from Transformers (BERT)

  • BERT就是原生transformer中的Encoder

  • 两个学习任务:MLM和NSP

    • Masked Language Model:将输入句子中的某些token随机替换为[MASK],然后基于上下文预测这些被替换的token。学习局部语义和上下文依赖关系。这有助于BERT理解每个词的表达。

    • Next Sentence Prediction:给定一对句子A和B,判断B是否是A的下一句。这可以学习句子之间的关系,捕获上下文信息,有助于BERT在文档层面上理解语言。

  • 李宏毅BERT

  • BERT

Enhanced Representation through Knowledge Integration (ERNIE)

  • ERNIE提出了Knowledge Masking的策略,ERNIE将Knowledge分成了三个类别:token级别(Basic-Level)、短语级别(Phrase-Level) 和 实体级别(Entity-Level)。通过对这三个级别的对象进行Masking,提高模型对字词、短语的知识理解。
  • 预训练模型ERINE
  • ERINE的改进

Generative Pre-Training (GPT)

  • GPT 使用 Transformer 的 Decoder 结构,并对 Transformer Decoder 进行了一些改动,原本的 Decoder 包含了两个 Multi-Head Attention 结构,GPT 只保留了 Mask Multi-Head Attention。

  • GPT

  • GPT阅读

相关推荐
Wnq100722 小时前
世界模型 AI:认知跃迁的可行性与本质性挑战
人工智能
穷人小水滴2 小时前
科幻 「备用肉身虫」 系列设定集 (AI 摘要)
人工智能·aigc·科幻·未来·小说·设定
老赵聊算法、大模型备案2 小时前
北京市生成式人工智能服务已备案信息公告(2025年12月11日)
人工智能·算法·安全·aigc
咬人喵喵2 小时前
上下文窗口:AI 的“大脑容量”
人工智能
workflower2 小时前
时序数据获取事件
开发语言·人工智能·python·深度学习·机器学习·结对编程
weixin_446122462 小时前
一个案例验证 LLM大模型编码能力哪家强
人工智能
老蒋新思维3 小时前
创客匠人峰会深度解析:知识变现的 “信任 - 效率” 双闭环 —— 从 “单次交易” 到 “终身复购” 的增长密码
大数据·网络·人工智能·tcp/ip·重构·数据挖掘·创客匠人
大刘讲IT3 小时前
面向中小企业的企业AI Agent未来3年构建蓝图规划
人工智能·经验分享·ai·开源·制造
yzx9910133 小时前
深度学习的进化之路:从感知机到通用智能的曙光
人工智能·深度学习
是开心的栗子呀4 小时前
阿里云天池:预测二手车交易价格的机器学习项目-高效实现MAE低于500分
人工智能·机器学习·阿里云·ai·云计算