通过fu过 Function Calling 查询数据库

from openai import OpenAI

import os

import json

from dotenv import load_dotenv, find_dotenv

_ = load_dotenv(find_dotenv()) # 读取本地 .env 文件,里面定义了 OPENAI_API_KE

client = OpenAI(

api_key=os.getenv("OPENAI_API_KEY"),

base_url=os.getenv("OPENAI_BASE_URL")

)

def get_sql_completion(messages, model="gpt-3.5-turbo-1106"):

response = client.chat.completions.create(

model=model,

messages=messages,

temperature=0,

tools=[{ # 摘自 OpenAI 官方示例 https://github.com/openai/openai-cookbook/blob/main/examples/How_to_call_functions_with_chat_models.ipynb

"type": "function",

"function": {

"name": "ask_database",

"description": "Use this function to answer user questions about business.

Output should be a fully formed SQL query.",

"parameters": {

"type": "object",

"properties": {

"query": {

"type": "string",

"description": f"""

SQL query extracting info to answer the user's question.

SQL should be written using this database schema:

{database_schema_string}

The query should be returned in plain text, not in JSON.

The query should only contain grammars supported by SQLite.

""",

}

},

"required": ["query"],

}

}

}],

)

return response.choices[0].message

描述数据库表结构

database_schema_string = """

CREATE TABLE orders (

id INT PRIMARY KEY NOT NULL, -- 主键,不允许为空

customer_id INT NOT NULL, -- 客户ID,不允许为空

product_id STR NOT NULL, -- 产品ID,不允许为空

price DECIMAL(10,2) NOT NULL, -- 价格,不允许为空

status INT NOT NULL, -- 订单状态,整数类型,不允许为空。0代表待支付,1代表已支付,2代表已退款

create_time TIMESTAMP DEFAULT CURRENT_TIMESTAMP, -- 创建时间,默认为当前时间

pay_time TIMESTAMP -- 支付时间,可以为空

);

"""

import sqlite3

创建数据库连接

conn = sqlite3.connect(':memory:')

cursor = conn.cursor()

创建orders表

cursor.execute(database_schema_string)

插入5条明确的模拟记录

mock_data = [

(1, 1001, 'TSHIRT_1', 50.00, 0, '2023-10-12 10:00:00', None),

(2, 1001, 'TSHIRT_2', 75.50, 1, '2023-10-16 11:00:00', '2023-08-16 12:00:00'),

(3, 1002, 'SHOES_X2', 25.25, 2, '2023-10-17 12:30:00', '2023-08-17 13:00:00'),

(4, 1003, 'HAT_Z112', 60.75, 1, '2023-10-20 14:00:00', '2023-08-20 15:00:00'),

(5, 1002, 'WATCH_X001', 90.00, 0, '2023-10-28 16:00:00', None)

]

for record in mock_data:

cursor.execute('''

INSERT INTO orders (id, customer_id, product_id, price, status, create_time, pay_time)

VALUES (?, ?, ?, ?, ?, ?, ?)

''', record)

提交事务

conn.commit()

def ask_database(query):

cursor.execute(query)

records = cursor.fetchall()

return records

prompt = "上个月的销售额"

prompt = "统计每月每件商品的销售额"

prompt = "哪个用户消费最高?消费多少?"

messages = [

{"role": "system", "content": "基于 order 表回答用户问题"},

{"role": "user", "content": prompt}

]

response = get_sql_completion(messages)

if response.content is None:

response.content = ""

messages.append(response)

print("Function Calling")

print(response)

if response.tool_calls is not None:

tool_call = response.tool_calls[0]

if tool_call.function.name == "ask_database":

arguments = tool_call.function.arguments

args = json.loads(arguments)

print("SQL")

print(args["query"])

result = ask_database(args["query"])

print("DB Records")

print(result)

    messages.append({
        "tool_call_id": tool_call.id,
        "role": "tool",
        "name": "ask_database",
        "content": str(result)
    })
    response = get_sql_completion(messages)
    print("====最终回复====")
    print(response.content)
相关推荐
hunteritself1 小时前
AI Weekly『12月16-22日』:OpenAI公布o3,谷歌发布首个推理模型,GitHub Copilot免费版上线!
人工智能·gpt·chatgpt·github·openai·copilot
三月七(爱看动漫的程序员)2 天前
Knowledge Graph Prompting for Multi-Document Question Answering
人工智能·gpt·学习·语言模型·自然语言处理·机器人·知识图谱
三月七(爱看动漫的程序员)2 天前
LEAST-TO-MOST PROMPTING ENABLES COMPLEX REASONING IN LARGE LANGUAGE MODELS---正文
人工智能·gpt·学习·机器学习·语言模型·自然语言处理·llama
hunteritself2 天前
OpenAI直播发布第11天:ChatGPT桌面客户端升级,就这?
人工智能·gpt·chatgpt·语音识别·claude
ghostwritten2 天前
Linux 下的 GPT 和 MBR 分区表详解
linux·运维·gpt
旷野..2 天前
GPT 时代,精进编程思维 + 熟练 Prompt 是否是新的编程范式?
python·gpt·prompt
that's boy2 天前
ChatGPT Search开放:实时多模态搜索新体验
人工智能·gpt·chatgpt·openai·midjourney
云起无垠3 天前
第78期 | GPTSecurity周报
人工智能·gpt·网络安全·aigc
戴着眼镜看不清4 天前
从腾讯云的恶意文件查杀学习下PHP的eval函数
android·python·gpt·学习·网络安全·木马·中转api
三月七(爱看动漫的程序员)5 天前
AI Alignment: A Comprehensive Survey---分布转移下的学习
人工智能·gpt·深度学习·学习·语言模型·自然语言处理·chatgpt