Transformer、BERT、GPT以及Embedding之间的关系

1. Transformer架构的两大方向

Transformer分为两大类应用,但划分标准不是"分类vs生成",而是编码方式

  • Encoder架构 (代表:BERT):
    使用Transformer的​编码器​ (Encoder),擅长​理解任务​ (文本分类、实体识别、语义匹配等)。
    • 特点:双向注意力,能看到整个句子的上下文
    • 输出:每个token的上下文相关表示(即Embedding)
  • Decoder架构 (代表:GPT):
    使用Transformer的​解码器​ (Decoder),擅长​生成任务​ (文本续写、对话、翻译等)。
    • 特点:单向注意力(只能看前面的词),自回归生成
    • 输出:下一个token的概率分布

"BERT分类模型"和"GPT生成模型"是正确的,但Embedding不是独立的一类,而是这些模型的中间产物。


2. Embedding模型的本质

Embedding(嵌入)是所有Transformer模型的底层能力,指将离散的文本转换为连续向量表示的过程:

  • BERT的Embedding
    通过Encoder生成,包含双向上下文信息,适合用于:
    • 句子/词向量表示(如语义搜索)
    • 下游任务的输入特征(如分类、聚类)
  • GPT的Embedding
    通过Decoder生成,带有单向上下文信息,通常用于:
    • 生成过程中的隐状态表示
    • 微调时的特征提取(较少直接使用)

独立存在的"Embedding模型"(如OpenAI的text-embedding-ada-002)通常是基于Encoder架构(类似BERT)训练的,专门用于生成高质量的文本向量表示。


3. 三者的关系总结

概念 所属架构 核心功能 典型应用场景
BERT Transformer编码器 生成双向上下文Embedding 文本分类、语义理解
GPT Transformer解码器 自回归生成文本 对话、创作、代码生成
Embedding模型 通常基于编码器 输出文本的向量表示 搜索、推荐、聚类

4. 常见误解澄清

  • 不是所有Embedding都来自BERT
    Embedding是任何神经网络的通用能力,CNN/RNN也能生成Embedding,只是Transformer(尤其是BERT)的Embedding质量更高。
  • GPT也有Embedding
    GPT在生成过程中会内部产生Embedding,但这些Embedding是单向的,通常不直接用于表示任务。
  • Embedding模型≠分类模型
    专门用于生成Embedding的模型(如Sentence-BERT)会优化向量表示质量,而BERT分类模型是在Embedding基础上加分类头微调得到的。

5. 技术演进趋势

  • 统一趋势:现代大模型(如GPT-4)逐渐融合编码器和解码器能力,支持生成和理解双重任务。
  • Embedding专用化:业界趋向于训练独立的Embedding模型(如Cohere Embed、OpenAI Embedding),与生成模型(GPT)分工协作。
相关推荐
ReinaXue4 小时前
大模型【进阶】(四)QWen模型架构的解读
人工智能·神经网络·语言模型·transformer·语音识别·迁移学习·audiolm
之墨_1 天前
【大语言模型入门】—— Transformer 如何工作:Transformer 架构的详细探索
语言模型·架构·transformer
CodeShare1 天前
TTS-1技术报告:基于Transformer的文本转语音模型
transformer·语音合成·文本转语音
xiaoli23271 天前
课题学习笔记3——SBERT
笔记·学习·nlp·bert
AI扶我青云志1 天前
BERT和GPT和ELMO核心对比
人工智能·gpt·bert
盼小辉丶2 天前
Transformer实战——BERT模型详解与实现
深度学习·bert·transformer
POLOAPI2 天前
从模型到生产:AI 大模型落地工程与效率优化实践
人工智能·gpt·gemini
007tg3 天前
007TG洞察:GPT-5前瞻与AI时代竞争力构建:技术挑战与落地路径
人工智能·gpt·机器学习
nassi_3 天前
GPT Agent与Comet AI Aent浏览器对比横评
人工智能·gpt
陈敬雷-充电了么-CEO兼CTO3 天前
字节跳动开源Coze,开启AI Agent开发新时代?
人工智能·gpt·chatgpt·开源·大模型·agi·coze