gRPC入门系列之6-添加pprof

程序在运行过程中,总是会遇到一些性能问题,比如cpu使用率莫名奇妙的飙升、内存使用率奇高等,轻者导致接口响应速度变慢,重者导致系统崩溃,无法提供服务。

这时候,我们就需要对程序进行性能分析,找出问题所在。在golang中,我们可以使用pprof进行性能分析。今天,我们继续丰富我们的gRPC服务,为其添加pprof组件。

pprof简介

Go语言的pprof库,可以用于分析Go程序的性能瓶颈,它的主要功能有:

  • 提供可视化的web界面。
  • cpu使用情况分析。
  • 内存使用情况分析。
  • 阻塞分析。
  • 互斥锁分析。
  • 协程分析。

pprof相关包主要有两个:

  • runtime/pprof:实时采集程序运行时数据以供分析。
  • net/http/pprof:在runtime/pprof基础上,提供相关http节课,可以通过相关url来查看性能分析数据。

添加pprof

我们此次使用net/http/pprof库,需要监听http端口,来提供相关性能分析服务。

我们在服务端程序中添加如下代码:

go 复制代码
	go func() {
		err = http.ListenAndServe(":6060", nil)

		if err != nil {
			logger.Fatal("pprof start failed", zap.Error(err))
		}
	}()

上面,我们启用了一个监听6060端口的http服务来采集性能分析数据。

接下来,我们重新编译服务端程序并启动:

bash 复制代码
make consuldemo-build && ./consuldemo/bin/server

然后,我们在浏览器中访问http://localhost:6060/debug/pprof/,可以看到如下界面:

其中:

  • allocs:所有的历史内存分配情况。
  • block:阻塞情况。
  • cmdline:命令行调用信息。
  • goroutine:协程情况。
  • heap:当前活跃对象的堆内存分配采集情况。
  • mutex:互斥锁信息。
  • profile:cpu使用情况。
  • threadcreate:新的操作系统线程创建情况。
  • trace:当前程序的执行trace。

更多信息,可以查看源代码(net/http/pprof/pprof.go)或参考文档。

测试

采集过去20s的cpu使用数据

我们执行如下命令,来采集过去20s的cpu使用数据:

bash 复制代码
go tool pprof -seconds 20 -http=localhost:6061 http://localhost:6060/debug/pprof/profile

在上面的命令中,我们从6060端口采集数据,采集时间为20s,并在本地6061端口启动http服务,用于展示采集到的数据。 执行成功后,将自动打开浏览器(http://localhost:6061/ui/):

我们的gRPC服务处于空闲状态,所以可以看到大部分时间用于findRunnable(查找待运行的写成)。

采集过去20s的堆内存使用情况

我们执行如下命令,来采集过去20s的堆内存使用情况:

bash 复制代码
go tool pprof -seconds 20 -http=localhost:6061 http://localhost:6060/debug/pprof/heap

执行成功后,将自动打开浏览器(http://localhost:6061/ui/): 我们点击SAMPLE-objects,查看对象分配情况:

没有任何数据。这是因为我们的服务处于空闲状态,没有进行任何内存分配。 下面,我们在服务端程序中添加如下测试代码:

go 复制代码
func allocDebug() {
	// 分配1MB内存
	_ = make([]byte, 1<<20)
}

func main() {
    // ...
    go func() {
        for {
            allocDebug()
            time.Sleep(time.Second)
        }
    }()
    // ...
}

在上面的代码中,我们每隔一秒,都会新建一个切片,为其分配1M字节的内存 我们重新编译并启动服务端程序:

bash 复制代码
make consuldemo-build && ./consuldemo/bin/server

重新执行采集命令:

bash 复制代码
go tool pprof -seconds 20 -http=localhost:6061 http://localhost:6060/debug/pprof/heap

执行成功后,将自动打开浏览器(http://localhost:6061/ui/),我们点击SAMPLES->alloc_objects,查看对象分配情况: 可以看到,几乎全部对象都由allocDebug函数分配。

实际工作中,不一定非要采用这种方式来进行性能分析,如果知道具体哪个接口产生了瓶颈,可以直接在本地测试这个接口对应的方法。

参考文档

本文由mdnice多平台发布

相关推荐
CodeSheep1 小时前
稚晖君公司再获新投资,yyds!
前端·后端·程序员
袁煦丞4 小时前
AI配音情感魔术师ChatTTS: cpolar内网穿透实验室第414个成功挑战
前端·程序员·远程工作
DeepSeek忠实粉丝4 小时前
微调篇--Transformers多模态流水线任务
人工智能·程序员·llm
LLM大模型19 小时前
LangGraph篇-LangGraph快速入门
人工智能·程序员·llm
LLM大模型19 小时前
LangGraph篇-核心组件
人工智能·程序员·llm
hotdogc10171 天前
Zed 和 Cursor 的 AI 到底谁才是未来?
程序员
天天摸鱼的java工程师1 天前
前端难还是后端难?作为八年后端开发,我想说点实话
前端·后端·程序员
沉默王二1 天前
自从切换到字节的TRAE Pro 版,编程真的爽的起飞。
人工智能·后端·程序员
DyLatte1 天前
别在用“长期主义”骗自己了
程序员
Copy2AI1 天前
Copy2AI智能创作助手使用教程与场景
程序员