Kafka核心逻辑介绍 | 京东云技术团队

1,概念

Kafka是最初由Linkedin公司开发,是一个分布式、支持分区的(partition)、多副本的(replica)分布式消息系统(kafka2.8.0版本之后接触了对zk的依赖,使用自己的kRaft做集群管理,新增内部主体@metadata存储元数据信息),它的最大的特性就是可以实时的处理大量数据以满足各种需求场景:比如基于hadoop的批处理系统、低延迟的实时系统、storm/Spark流式处理引擎,web/nginx日志、访问日志,消息服务等等,用scala语言编写,Linkedin于2010年贡献给了Apache基金会并成为顶级开源 项目。

类似产品还有 JBoss、MQ(ActiveMQ、RabbitMQ-erlang、RocketMQ-支持事务型消息)

2,kafka的特性

  • 高吞吐量、低延迟 :kafka每秒可以处理几十万条消息,它的延迟最低只有几毫秒。(RecordAccumulate
  • 可扩展性:kafka集群支持热扩展
  • 持久性、可靠性:消息被持久化到本地磁盘,并且支持数据备份防止数据丢失
  • 容错性:允许集群中节点失败(若副本数量为n,则允许n-1个节点失败)
  • 高并发:支持数千个客户端同时读写

3,为什么要使用kafka

① 异步处理

② 服务解耦

③ 流量控制

4,kafka原理解析

消息是kafka的基本单位,消息是一串字节构成的。主要是key、value,key根据一定的策略,将消息体路由到不同的partition分区中。

kafka消息全部持久化到磁盘,其使用日志文件的方式来保存。Partition 以文件的形式存储在文件系统中

命名规则:<topic_name>-<partition_id>

Producer: 消息⽣产者,向 Kafka Broker 发消息的客户端。

Consumer: 消息消费者,从 Kafka Broker 取消息的客户端。Kafka支持持久化,生产者退出后,未消费的消息仍可被消费。

Consumer Group: 消费者组(CG),消费者组内每个消费者负责消费不同分区的数据,提⾼消费能⼒。⼀个分区只能由组内⼀个消费者消费,消费者组之间互不影响。所有的消费者都属于某个消费者组,即消费者组是逻辑上的⼀个订阅者。

Broker: ⼀台 Kafka 机器就是⼀个 Broker。⼀个集群(kafka cluster)由多个 Broker 组成。⼀个 Broker 可以容纳多个 Topic。

Controller: 由zookeeper选举其中一个Broker产生。它的主要作用是在 Apache ZooKeeper~~ ~~的帮助下管理和协调整个 Kafka 集群。Broker都在ZooKeeper的Controller节点上注册一个Watcher,当controller发生故障的时候,注册在其上的Watcher会被触发,竞选成为新的controller

Topic: 可以理解为⼀个队列,Topic 将消息分类,⽣产者和消费者⾯向的是同⼀个 Topic。

Partition: 为了实现扩展性,提⾼并发能⼒,⼀个⾮常⼤的 Topic 可以分布到多个 Broker上,⼀个 Topic 可以分为多个 Partition,同⼀个topic在不同的分区的数据是不重复的,每个 Partition 是⼀个有序的队列,其表现形式就是⼀个⼀个的⽂件夹。不同Partition可以部署在同一台机器上,但不建议这么做。

Replication: 每⼀个分区都有多个副本,副本的作⽤是做备胎。当主分区(Leader)故障的时候会选择⼀个备胎(Follower)上位,成为Leader。在kafka中默认副本的最⼤数量是10个,且副本的数量不能⼤于Broker的数量,follower和leader绝对是在不同的机器,同⼀机器对同⼀个分区也只可能存放⼀个副本(包括⾃⼰)。

Message: 每⼀条发送的消息主体。

Leader: 每个分区多个副本的"主"副本,⽣产者发送数据的对象,以及消费者消费数据的对象,都是 Leader。

Follower: 每个分区多个副本的"从"副本,使用发布订阅模式主动拉取Leader的数据(与redis不同),实时从 Leader 中同步数据,保持和 Leader 数据的同步。Leader 发⽣故障时,某个 Follower 还会成为新的 Leader。

Offset: 消费者消费的位置信息,监控数据消费到什么位置,当消费者挂掉再重新恢复的时候,可以从消费位置继续消费。

ZooKeeper: Kafka 集群能够正常⼯作,需要依赖于 ZooKeeper,ZooKeeper 帮助 Kafka存储和管理集群信息。

High Level API 和Low Level API :高水平API,kafka本身定义的行为,屏蔽细节管理,使用方便;低水平API细节需要自己处理,较为灵活但是复杂。

kafka的高吞吐量

1,数据批量发送

kafka消息从producer发送出去时并不是一条一条发送的,而是先发送到一个消息批次(RecordAccumulate)中,然后由sender线程异步的将消息批次中的消息发到broker。这也是kafka吞吐量高的主要原因之一

消息发送 ---> 放入队列 ---> 申请内存 ---> 消费消息

之所以用到CopyOnWriteMap (采用写时复制),读不需要加锁,适用于读多写少的情况。而kafka只有当某个topic+partition下的第一条消息进行写入时才会写入数据,大部分情况都是读,符合读多写少的情况。

kafka的高可用

每个partition分区至少有一个副本,各个副本同步leader副本,一主多从的模式。

  • AR:分区中的所有 Replica 统称为 AR
  • ISR:所有与 Leader 副本保持一定程度同步的Replica(包括 Leader 副本在内)组成 ISR
  • OSR:与 Leader 副本同步滞后过多的 Replica 组成了 OSR

有效的分区副本是一个ISR集合,ISR集合保存的是有效的副本集合,如果发现某一个副本同步非常慢,则可以自动剔除。leader副本和fllower副本同步的时候会有延迟,但是只要未超过阈值都是可以接受的

ISR集合的存在只要是解决分区leader和follwer 同步复制和异步复制带来的问题

持同步不是指与Leader数据保持完全一致,只需在replica.lag.time.max.ms时间内与Leader保持有效连接

Follower周期性地向Leader发送FetchRequest请求,发送时间间隔配置在replica.fetch.wait.max.ms中,默认值为500ms

极端情况下,如果ISR集合内的所有节点都down了,有两种情况:

1,等待ISR集合中的某一个节点恢复并担任leader

2,选择所有节点(包含ISR之外的) 第一个恢复的担当leader

那么目前kafka的策略是第二点,这样会有一个问题就是ISR集合之外的节点可能数据不全,会和有效ISR集合内节点的数据有出入,造成数据不准确,但是保持了可用性

ACK机制

① 0:生产者无需等待服务端的任何确认,消息被添加到生产者套接字缓冲区后就视为已发送,因此acks=0不能保证服务端已收到消息

② 1:只要 Partition Leader 接收到消息而且写入本地磁盘了,就认为成功了,不管它其他的 Follower 有没有同步过去这条消息了

③ all:Leader将等待ISR中的所有副本确认后再做出应答,因此只要ISR中任何一个副本还存活着,这条应答过的消息就不会丢失

2,磁盘的顺序读写

3,数据压缩传输

4,topic划分多个partition分区,提高并发能力

kafka高性能

普通文件读取:

磁盘文件 --①-> 内核缓冲区 --②-> 用户缓存区 --③-> 内核socket缓存区 --④-> 网卡接口 ---> 消费者

零拷贝技术

磁盘文件 --①-> 内核缓冲区 --②(transferTo)-> 网卡接口 ---> 消费者

划重点: 零拷贝并不是不需要拷贝,而是减少拷贝的次数。

DMA

DMA技术使得 数据文件在各个层之间的传输,则可以直接绕过CPU。

linux系统中,零拷贝依赖于底层的sendfile() 方法实现,java中,FileChannel.transfeTo方法的底层实现了sendfile方法。

kafka消费方式

推拉结合:生产者push,消费组pull

① enable.auto.commit 是否自动提交自己的offset值;默认值时true

auto.commit.interval.ms 自动提交时长间隔;默认值时5000 ms

③ consumer.commitSync(); offset提交命令;

at most onece: 最多消费一次,存在数据丢失的情况

at least once: 最少消费一次,保证数据不丢,存在重复消费 (kafka默认消费方式)

exactly once: 精确一次,无论何种情况下,消息只会消费一次 (依赖于外部存储系统协调)

最多一次、最少一次的主要区别:是消费消息再记录offset还是先记录offset再消费消息。

5,kafka消息丢失问题

场景:

消费端从leader副本poll了一批消息消费之后,leader副本挂机了,之后从ISR选举出的副本中的消息可能是比leader少了的。如果此时consumer处理完这批数据提交offset,消费端会丢失这部分新产生而在kafka中实实在在保存着的数据。

解决方式:

HW(high Watermark)高水位

它标识了一个特定的消息偏移量(offset),消费者只能拉取到这个 offset 之前的消息。

分区 ISR 集合中的每个副本都会维护自身的 LEO(Log End Offset):俗称日志末端位移,而 ISR 集合中最小的 LEO 即为分区的 HW,对消费者而言只能消费 HW 之前的消息。

1.kafka的消费组如果需要增加组员,最多增加到和partition数量一致,否则超过的组员只会占用资源而没有作用

2.Raft协议是啥? 比较流行的分布式协议算法(leader选举、日志复制)

3.分区设置:一天一亿消息大致分为8个分区资源可满足。

参考: www.jianshu.com/p/6cbe28a44...

作者:京东零售 张继

来源:京东云开发者社区 转载请注明来源

相关推荐
Lin_Miao_0917 小时前
Kafka优势剖析-流处理集成
分布式·kafka
Lin_Miao_0919 小时前
Kafka优势剖析-灵活的配置与调优
分布式·kafka
NullPointerExpection19 小时前
java 中 main 方法使用 KafkaConsumer 拉取 kafka 消息如何禁止输出 debug 日志
java·kafka·log4j·slf4j
极客先躯19 小时前
flink kafka 版本对照表
大数据·flink·kafka
恩爸编程1 天前
全方位解读消息队列:原理、优势、实例与实践要点
消息队列·消息队列是什么·消息队列讲解·消息队列介绍·消息队列概念·消息队列认识·消息队列作用
zpf_叶绿体学编程1 天前
Kafka-go语言一命速通
分布式·kafka
java1234_小锋2 天前
什么是Kafka?有什么主要用途?
分布式·kafka
PzZzang22 天前
filebeat、kafka
分布式·kafka
Lin_Miao_092 天前
Kafka优势剖析-高效的数据复制
分布式·kafka
Lin_Miao_092 天前
Kafka优势剖析-幂等性和事务
分布式·kafka