真实并发编程问题-1.钉钉面试题

  • 👏作者简介:大家好,我是爱吃芝士的土豆倪,24届校招生Java选手,很高兴认识大家
  • 📕系列专栏:Spring源码、JUC源码、Kafka原理、分布式技术原理、数据库技术
  • 🔥如果感觉博主的文章还不错的话,请👍三连支持👍一下博主哦
  • 🍂博主正在努力完成2023计划中:源码溯源,一探究竟
  • 📝联系方式:nhs19990716,加我进群,大家一起学习,一起进步,一起对抗互联网寒冬👀

文章目录

前言

学完了并发编程,是否真的能够灵活应用其思想呢?

实践才是检验真理的唯一标准,好记性不如烂笔头。

下面就让我以我一个朋友社招面试钉钉的一道面试题来讲解下并发编程的实际应用吧。

问题描述

java 复制代码
// 假设我们有如下代码,query 是公共方法会提供给任意业务方调用,请完成 query 方法
// 要求:多线程情况下 loadFromServer 调用次数最多只执行一次,且每次调用query方法要有回调回来的数据
public class Main {

    private Executor mExecutor = Executors.newFixedThreadPool(4);
    private Executor mServerExecutor = Executors.newFixedThreadPool(4);

    private Data mData;

    public void queryData(Callback callback) {
        if (callback == null) {
            return;
        }
        mExecutor.execute(new Runnable() {
            @Override
            public void run() {
                // todo 代码写在这
            }
        });
    }

    private void loadFromServer(Callback callback) {
        mServerExecutor.execute(new Runnable() {
            @Override
            public void run() {
                // mock
                try {
                    Thread.sleep(5000L);
                } catch (InterruptedException e) {
                    throw new RuntimeException(e);
                }
                if (callback != null) {
                    callback.onSuccess(new Data());
                }
            }
        });
    }

    public static class Data {
    }

    public interface Callback {
        void onSuccess(Data data);
    }
}

测试类

java 复制代码
public class Test {

    private static volatile int cnt = 0;

    public static void main(String[] args) throws InterruptedException {
        Main main = new Main();
        for (int i = 0 ; i < 5; i++) {
            new Thread(() -> {
                main.queryData(new Main.Callback() {
                    @Override
                    public void onSuccess(Main.Data data) {
                        if (data == null) {
                            System.out.println("data is null");
                        } else {
                            System.out.println("getData is " + data);
                        }
                        ++cnt;
                    }
                });
            }).start();
        }
        Thread.sleep(20000L);
        System.out.println("cnt = " + cnt);
    }

}

这道题的本质就是说,多线程情况下 loadFromServer 调用次数最多只执行一次,且每次调用query方法要有回调回来的数据,光从题意上我们能够很清楚的想到思路,这并不难。

解决思路

常规解法

首先能想到的是,这一看不就是很像多线程情况下的单例模式?其能保证多线程情况下 loadFromServer 调用次数最多只执行一次,但是还需要每次调用query方法要有回调回来的数据,也就是说,假如一次来了五个调用,那么其他调用要等loadFromServer 调用过一次之后,才能够返回,这不就是典型的线程同步问题,可以使用CountDownLatch来实现。

基于此分析,那么我们针对这个问题就非常清晰了,这也是立马能想到的解法之一了。

java 复制代码
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.Executor;
import java.util.concurrent.Executors;

// 假设我们有如下代码,query 是公共方法会提供给任意业务方调用,请完成 query 方法
// 要求:多线程情况下 loadFromServer 调用次数最多只执行一次,且每次调用query方法要有回调回来的数据
public class Main {

    private Executor mExecutor = Executors.newFixedThreadPool(4);
    private Executor mServerExecutor = Executors.newFixedThreadPool(4);

    private Data mData;
    // 定义一个 volatile 变量来保证线程可见性和禁止指令重排序
    private volatile boolean mHasLoadFromServer = false;
    private CountDownLatch mLatch = new CountDownLatch(1);

    public void queryData(Callback callback) {
        if (callback == null) {
            return;
        }
        mExecutor.execute(new Runnable() {
            @Override
            public void run() {
                // 双重检查加锁
                if (!mHasLoadFromServer) {
                    synchronized (Main.this) {
                        if (!mHasLoadFromServer) {
                            loadFromServer(new Callback() {
                                @Override
                                public void onSuccess(Data data) {
                                    mData = data;
                                    mLatch.countDown();
                                }
                            });
                            mHasLoadFromServer = true;
                            try {
                                mLatch.await(); // 等待 loadFromServer 执行完成
                            } catch (InterruptedException e) {
                                e.printStackTrace();
                            }
                        }
                    }
                }
                callback.onSuccess(mData);
            }
        });
    }

    private void loadFromServer(Callback callback) {
        mServerExecutor.execute(new Runnable() {
            @Override
            public void run() {
                // mock
                try {
                    Thread.sleep(5000L);
                } catch (InterruptedException e) {
                    throw new RuntimeException(e);
                }
                mData = new Data();
                if (callback != null) {
                    callback.onSuccess(mData);
                }
            }
        });
    }

    public static class Data {
    }

    public interface Callback {
        void onSuccess(Data data);
    }
}

运行结果:

getData is Main$Data@17f2e0c9
getData is Main$Data@17f2e0c9
getData is Main$Data@17f2e0c9
getData is Main$Data@17f2e0c9
getData is Main$Data@17f2e0c9
cnt = 5

问题

我们重点看一下这块的代码

java 复制代码
public void queryData(Callback callback) {
        if (callback == null) {
            return;
        }
        mExecutor.execute(new Runnable() {
            @Override
            public void run() {
                // 双重检查加锁
                if (!mHasLoadFromServer) {
                    synchronized (Main.this) {
                        if (!mHasLoadFromServer) {
                            loadFromServer(new Callback() {
                                @Override
                                public void onSuccess(Data data) {
                                    mData = data;
                                    mLatch.countDown();
                                }
                            });
                            mHasLoadFromServer = true;
                            try {
                                mLatch.await(); // 等待 loadFromServer 执行完成
                            } catch (InterruptedException e) {
                                e.printStackTrace();
                            }
                        }
                    }
                }
                callback.onSuccess(mData);
            }
        });
    }

我们每次其实都需要进行一个锁的判断,假如说后续,如果后续mData不为null,其实是可以直接调用返回的,并不需要进行判断和锁的竞争,这也是性能并不好的情况。

修改:

java 复制代码
public void queryData(Callback callback) {
        if (callback == null) {
            return;
        }

        if (mData != null) {
            callback.onSuccess(mData);
            return;
        }

        mExecutor.execute(new Runnable() {
            @Override
            public void run() {
                // 双重检查加锁
                if (!mHasLoadFromServer) {
                    synchronized (Main.this) {
                        if (!mHasLoadFromServer) {
                            loadFromServer(new Callback() {
                                @Override
                                public void onSuccess(Data data) {
                                    mData = data;
                                    mLatch.countDown();
                                }
                            });
                            mHasLoadFromServer = true;
                            try {
                                mLatch.await(); // 等待 loadFromServer 执行完成
                            } catch (InterruptedException e) {
                                e.printStackTrace();
                            }
                        }
                    }
                }
                callback.onSuccess(mData);
            }
        });
    }

但是该方法可能还存在问题,假如在等待的过程中,积攒了太多太多的请求,那么我们集成进行回调的时候,可能超过我们服务器所能承受的阈值,那么可能会影响影响,为此可以采用其他解法来实现。

其他解法

java 复制代码
public class Main {
    private Executor mExecutor = Executors.newFixedThreadPool(4);
    private Executor mServerExecutor = Executors.newFixedThreadPool(4);

    private Data mData;
    private volatile boolean mIsLoading = false;
    private List<Callback> mCallbacks = new ArrayList<>();

    public void queryData(Callback callback) {
        if (callback == null) {
            return;
        }

        if (mData != null) {
            callback.onSuccess(mData);
            return;
        }

        synchronized (this) {
            if (mIsLoading) {
                // 数据正在加载中,等待回调
                // 将回调函数添加到数据加载完成后的回调列表中
                mCallbacks.add(callback);
                return;
            }
            mIsLoading = true;
            mCallbacks.add(callback);
        }

        mExecutor.execute(new Runnable() {
            @Override
            public void run() {
                if (mData == null) {
                    loadFromServer(new Callback() {
                        @Override
                        public void onSuccess(Data data) {
                            System.out.println("loadFromServer");
                            mData = data;
                            notifyCallbacks(data);
                        }
                    });
                } else {
                    // 数据已经加载完成,直接返回
                    callback.onSuccess(mData);
                }
            }
        });
    }

    private void loadFromServer(Callback callback) {
        mServerExecutor.execute(new Runnable() {
            @Override
            public void run() {
                // mock
                try {
                    Thread.sleep(5000L);
                } catch (InterruptedException e) {
                    throw new RuntimeException(e);
                }
                if (callback != null) {
                    callback.onSuccess(new Data());
                }
            }
        });
    }

    private void notifyCallbacks(Data data) {
        synchronized (this) {
            for (Callback callback : mCallbacks) {
                callback.onSuccess(data);
            }
            mCallbacks.clear();
        }
    }

    public static class Data {
    }

    public interface Callback {
        void onSuccess(Data data);
    }
}

这种解法是采用一种回调集合的方法,假如说等待回调的请求过多,完全可以采用生产者消费者的思想来实现,基于回调集合,等到将来回调的时候,根据实际的一个性能阈值从回调集合中进行回调,使得系统能够稳定的运行。

总结

其实这个问题不仅仅想说一些解法的小细节,还是想说,其实这个面试题,更像是真实业务模型中抽取出来的,很偏向于业务开发,当我们学习完并发编程的时候,能够学习这样真实的业务模型,并能针对不同的场景进行分析,就能够触类旁通,更好的将并发编程的解决思路应用于实际问题的解决中去。

相关推荐
Yan.love25 分钟前
开发场景中Java 集合的最佳选择
java·数据结构·链表
椰椰椰耶28 分钟前
【文档搜索引擎】搜索模块的完整实现
java·搜索引擎
大G哥28 分钟前
java提高正则处理效率
java·开发语言
智慧老师1 小时前
Spring基础分析13-Spring Security框架
java·后端·spring
lxyzcm1 小时前
C++23新特性解析:[[assume]]属性
java·c++·spring boot·c++23
麦香--老农1 小时前
windows 钉钉缓存路径不能修改 默认C盘解决方案
缓存·钉钉
V+zmm101342 小时前
基于微信小程序的乡村政务服务系统springboot+论文源码调试讲解
java·微信小程序·小程序·毕业设计·ssm
Oneforlove_twoforjob2 小时前
【Java基础面试题025】什么是Java的Integer缓存池?
java·开发语言·缓存
xmh-sxh-13142 小时前
常用的缓存技术都有哪些
java
AiFlutter2 小时前
Flutter-底部分享弹窗(showModalBottomSheet)
java·前端·flutter