【Flink-Kafka-To-Kafka】使用 Flink 实现 Kafka 数据写入 Kafka

需求描述:

1、数据从 Kafka 写入 Kafka。

2、相关配置存放于 Mysql 中,通过 Mysql 进行动态读取。

3、此案例中的 Kafka 是进行了 Kerberos 安全认证的,如果不需要自行修改。

4、Kafka 数据为 Json 格式,通过 FlatMap 扁平化处理后完成写入。

5、读取时使用自定义 Source,写入时使用自定义 Sink。

6、本地测试时可以编辑 resources.flink_backup_local.yml 通过 ConfigTools.initConf 方法获取配置。

1)导入依赖

这里的依赖比较冗余,大家可以根据各自需求做删除或保留。

xml 复制代码
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>

    <groupId>example.cn.test</groupId>
    <artifactId>kafkaetl2kafka</artifactId>
    <version>1.0.0</version>


    <properties>
        <hbase.version>2.3.3</hbase.version>
        <hadoop.version>3.1.1</hadoop.version>
        <spark.version>3.0.2</spark.version>
        <scala.version>2.12.10</scala.version>
        <maven.compiler.source>8</maven.compiler.source>
        <maven.compiler.target>8</maven.compiler.target>
        <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
        <flink.version>1.14.0</flink.version>
        <scala.binary.version>2.12</scala.binary.version>
        <target.java.version>1.8</target.java.version>
        <maven.compiler.source>${target.java.version}</maven.compiler.source>
        <maven.compiler.target>${target.java.version}</maven.compiler.target>
        <log4j.version>2.17.2</log4j.version>
        <hadoop.version>3.1.2</hadoop.version>
        <hive.version>3.1.2</hive.version>
        <drools.version>7.18.0.Final</drools.version>
        <cos_api>5.2.4</cos_api>
    </properties>
    <dependencies>
        <!-- 基础依赖  开始-->
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-java</artifactId>
            <version>${flink.version}</version>
            <scope>provided</scope>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-streaming-java_${scala.binary.version}</artifactId>
            <version>${flink.version}</version>
            <scope>provided</scope>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-clients_${scala.binary.version}</artifactId>
            <version>${flink.version}</version>
            <scope>provided</scope>
        </dependency>
        <!-- 基础依赖  结束-->
        <!-- TABLE  开始-->
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-table-api-java-bridge_${scala.binary.version}</artifactId>
            <version>1.14.0</version>
            <scope>provided</scope>
        </dependency>

        <!-- 使用 hive sql时注销,其他时候可以放开 -->
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-table-planner_${scala.binary.version}</artifactId>
            <version>${flink.version}</version>
            <scope>provided</scope>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-streaming-scala_${scala.binary.version}</artifactId>
            <version>${flink.version}</version>
            <scope>provided</scope>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-table-common</artifactId>
            <version>${flink.version}</version>
            <scope>provided</scope>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-cep_${scala.binary.version}</artifactId>
            <version>${flink.version}</version>
        </dependency>
        <!-- TABLE  结束-->
        <!-- sql  开始-->
        <!-- sql解析 开始 -->
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-json</artifactId>
            <version>${flink.version}</version>
            <scope>provided</scope>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-csv</artifactId>
            <version>${flink.version}</version>
            <scope>provided</scope>
        </dependency>
        <!-- 检查点 -->
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-state-processor-api_${scala.binary.version}</artifactId>
            <version>${flink.version}</version>
            <scope>provided</scope>
        </dependency>
        <dependency>
            <groupId>commons-lang</groupId>
            <artifactId>commons-lang</artifactId>
            <version>2.5</version>
            <scope>compile</scope>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-runtime-web_${scala.binary.version}</artifactId>
            <version>${flink.version}</version>
            <scope>provided</scope>
        </dependency>
        <!-- 本地监控任务 结束 -->
        <!-- DataStream 开始 -->
        <dependency>
            <groupId>org.apache.logging.log4j</groupId>
            <artifactId>log4j-slf4j-impl</artifactId>
            <version>${log4j.version}</version>
            <scope>runtime</scope>
        </dependency>
        <dependency>
            <groupId>org.apache.logging.log4j</groupId>
            <artifactId>log4j-api</artifactId>
            <version>${log4j.version}</version>
            <scope>runtime</scope>
        </dependency>

        <dependency>
            <groupId>org.apache.logging.log4j</groupId>
            <artifactId>log4j-core</artifactId>
            <version>${log4j.version}</version>
            <scope>runtime</scope>
        </dependency>
        <!-- hdfs -->
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-client</artifactId>
            <version>3.3.1</version>
        </dependency>
        <!-- 重点,容易被忽略的jar -->
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-auth</artifactId>
            <version>${hadoop.version}</version>


        </dependency>
        <!-- rocksdb_2 -->
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-statebackend-rocksdb_${scala.binary.version}</artifactId>
            <version>${flink.version}</version>
            <scope>provided</scope>
        </dependency>
        <dependency>
            <groupId>org.projectlombok</groupId>
            <artifactId>lombok</artifactId>
            <version>1.16.18</version>
            <scope>provided</scope>
        </dependency>
        <dependency>
            <groupId>gaei.cn.x5l</groupId>
            <artifactId>acp-decode</artifactId>
            <version>1.0.0</version>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-sql-connector-kafka_${scala.binary.version}</artifactId>
            <version>${flink.version}</version>
        </dependency>
        <dependency>
            <groupId>org.jyaml</groupId>
            <artifactId>jyaml</artifactId>
            <version>1.3</version>
        </dependency>
        <dependency>
            <groupId>mysql</groupId>
            <artifactId>mysql-connector-java</artifactId>
            <version>5.1.44</version>
        </dependency>
        <dependency>
            <groupId>com.bazaarvoice.jolt</groupId>
            <artifactId>jolt-core</artifactId>
            <version>0.1.1</version>
        </dependency>
        <dependency>
            <groupId>com.bazaarvoice.jolt</groupId>
            <artifactId>json-utils</artifactId>
            <version>0.1.1</version>
        </dependency>
        <dependency>
            <groupId>com.alibaba</groupId>
            <artifactId>fastjson</artifactId>
            <version>1.1.23</version>
        </dependency>
        <dependency>
            <groupId>redis.clients</groupId>
            <artifactId>jedis</artifactId>
            <version>2.9.0</version>
        </dependency>
        <dependency>
            <groupId>org.drools</groupId>
            <artifactId>drools-core</artifactId>
            <version>${drools.version}</version>
        </dependency>
        <dependency>
            <groupId>org.drools</groupId>
            <artifactId>drools-compiler</artifactId>
            <version>${drools.version}</version>
        </dependency>
        <dependency>
            <groupId>org.kie</groupId>
            <artifactId>kie-api</artifactId>
            <version>${drools.version}</version>
        </dependency>
        <dependency>
            <groupId>org.drools</groupId>
            <artifactId>drools-templates</artifactId>
            <version>${drools.version}</version>
        </dependency>
        <dependency>
            <groupId>org.kie</groupId>
            <artifactId>kie-internal</artifactId>
            <version>${drools.version}</version>
        </dependency>
        <dependency>
            <groupId>org.drools</groupId>
            <artifactId>drools-decisiontables</artifactId>
            <version>${drools.version}</version>
        </dependency>

        <dependency>
            <groupId>cn.hutool</groupId>
            <artifactId>hutool-all</artifactId>
            <version>5.8.10</version>
        </dependency>

        <dependency>
            <groupId>com.qcloud</groupId>
            <artifactId>cos_api</artifactId>
            <version>${cos_api}</version>
            <exclusions>
                <exclusion>
                    <groupId>org.slf4j</groupId>
                    <artifactId>slf4j-log4j12</artifactId>
                </exclusion>
            </exclusions>
        </dependency>
    </dependencies>

    <build>
        <plugins>
            <!-- Java Compiler -->
            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-compiler-plugin</artifactId>
                <version>3.1</version>
                <configuration>
                    <source>${target.java.version}</source>
                    <target>${target.java.version}</target>
                </configuration>
            </plugin>

            <!-- We use the maven-shade plugin to create a fat jar that contains all necessary dependencies. -->
            <!-- Change the value of <mainClass>...</mainClass> if your program entry point changes. -->
            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-shade-plugin</artifactId>
                <version>3.0.0</version>
                <executions>
                    <!-- Run shade goal on package phase -->
                    <execution>
                        <phase>package</phase>
                        <goals>
                            <goal>shade</goal>
                        </goals>
                        <configuration>
                            <artifactSet>
                                <excludes>
                                    <exclude>org.apache.flink:force-shading</exclude>
                                    <exclude>com.google.code.findbugs:jsr305</exclude>
                                    <exclude>org.slf4j:*</exclude>
                                    <exclude>org.apache.logging.log4j:*</exclude>
                                    <exclude>org.apache.flink:flink-runtime-web_2.11</exclude>
                                </excludes>
                            </artifactSet>
                            <filters>
                                <filter>
                                    <!-- Do not copy the signatures in the META-INF folder.
                                    Otherwise, this might cause SecurityExceptions when using the JAR. -->
                                    <artifact>*:*</artifact>
                                    <excludes>
                                        <exclude>META-INF/*.SF</exclude>
                                        <exclude>META-INF/*.DSA</exclude>
                                        <exclude>META-INF/*.RSA</exclude>
                                    </excludes>
                                </filter>
                            </filters>
                            <transformers>
                                <transformer
                                        implementation="org.apache.maven.plugins.shade.resource.ManifestResourceTransformer">
                                    <mainClass>com.owp.flink.kafka.KafkaSourceDemo</mainClass>
                                </transformer>
                                <!-- flink sql 需要  -->
                                <!-- The service transformer is needed to merge META-INF/services files -->
                                <transformer
                                        implementation="org.apache.maven.plugins.shade.resource.ServicesResourceTransformer"/>
                                <!-- ... -->
                            </transformers>
                        </configuration>
                    </execution>
                </executions>
            </plugin>
        </plugins>

        <pluginManagement>
            <plugins>
                <!-- This improves the out-of-the-box experience in Eclipse by resolving some warnings. -->
                <plugin>
                    <groupId>org.eclipse.m2e</groupId>
                    <artifactId>lifecycle-mapping</artifactId>
                    <version>1.0.0</version>
                    <configuration>
                        <lifecycleMappingMetadata>
                            <pluginExecutions>
                                <pluginExecution>
                                    <pluginExecutionFilter>
                                        <groupId>org.apache.maven.plugins</groupId>
                                        <artifactId>maven-shade-plugin</artifactId>
                                        <versionRange>[3.0.0,)</versionRange>
                                        <goals>
                                            <goal>shade</goal>
                                        </goals>
                                    </pluginExecutionFilter>
                                    <action>
                                        <ignore/>
                                    </action>
                                </pluginExecution>
                                <pluginExecution>
                                    <pluginExecutionFilter>
                                        <groupId>org.apache.maven.plugins</groupId>
                                        <artifactId>maven-compiler-plugin</artifactId>
                                        <versionRange>[3.1,)</versionRange>
                                        <goals>
                                            <goal>testCompile</goal>
                                            <goal>compile</goal>
                                        </goals>
                                    </pluginExecutionFilter>
                                    <action>
                                        <ignore/>
                                    </action>
                                </pluginExecution>
                            </pluginExecutions>
                        </lifecycleMappingMetadata>
                    </configuration>
                </plugin>

            </plugins>
        </pluginManagement>
    </build>
</project>

2)代码实现

2.1.resources

2.1.1.appconfig.yml

yml 复制代码
mysql.url: "jdbc:mysql://1.1.1.1:3306/test?useSSL=false"
mysql.username: "test"
mysql.password: "123456"
mysql.driver: "com.mysql.jdbc.Driver"

2.1.2.log4j.properties

shell 复制代码
log4j.rootLogger=info, stdout
log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern=%-4r [%t] %-5p %c %x - %m%n

2.1.3.log4j2.xml

shell 复制代码
<?xml version="1.0" encoding="UTF-8"?>
<configuration monitorInterval="5">
    <Properties>
        <property name="LOG_PATTERN" value="%date{HH:mm:ss.SSS} [%thread] %-5level %logger{36} - %msg%n" />
        <property name="LOG_LEVEL" value="ERROR" />
    </Properties>

    <appenders>
        <console name="console" target="SYSTEM_OUT">
            <PatternLayout pattern="${LOG_PATTERN}"/>
            <ThresholdFilter level="${LOG_LEVEL}" onMatch="ACCEPT" onMismatch="DENY"/>
        </console>
        <File name="log" fileName="tmp/log/job.log" append="false">
            <PatternLayout pattern="%d{HH:mm:ss.SSS} %-5level %class{36} %L %M - %msg%xEx%n"/>
        </File>
    </appenders>

    <loggers>
        <root level="${LOG_LEVEL}">
            <appender-ref ref="console"/>
            <appender-ref ref="log"/>
        </root>
    </loggers>
</configuration>
yml 复制代码
business:
  datasource: 'TEST'
  refreshdelay: 60000
  refreshperiod: 60000
hdfs:
  checkPointPath: 'hdfs://nameserver/user/flink/checkpoints'
  checkpointTimeout: 600000
  checkpointing: 60000
  maxConcurrentCheckpoints: 1
  minPauseBetweenCheckpoints: 10000
  restartInterval: 120
  restartStrategy: 3
kafka-consumer:
  prop:
    auto.offset.reset: 'earliest'
    bootstrap.servers: 'kfk01:9092,kfk02:9092,kfk03:9092,kfk04:9092,kfk05:9092,kfk06:9092'
    enable.auto.commit: 'false'
    group.id: 'kafkaetl2kafka_test'
    fetch.max.bytes: '10485760'
    max.partition.fetch.bytes: '5242880'
    max.poll.interval.ms: '2000000'
    max.poll.records: '20000'
    receive.buffer.bytes: '10485760'
    send.buffer.bytes: '10485760'
    session.timeout.ms: '18000000'
    isKerberized: '1'
    krb5Conf: '/opt/conf/krb5.conf'
    security_protocol: 'SASL_PLAINTEXT'
    useTicketCache: 'false'
    serviceName: 'kafka'
    keytab: '/opt/conf/test.keytab'
    principal: 'test@TEST.TEST.COM'
  topics: 'test'
kafka-producer:
  kafkaProducersPoolSize: 5
  defaultTopic: 'test'
  prop:
    acks: 'all'
    bootstrap.servers: 'kfk01:9092,kfk02:9092,kfk03:9092,kfk04:9092,kfk05:9092,kfk06:9092'
    compression.type: 'lz4'
    retries: '40'
    retry.backoff.ms: '5000'
    batch.size: '262144'
    buffer.memory: '536870912'
    max.request.size: '2148576'
    request.timeout.ms: '30000000'
    send.buffer.bytes: '10485760'
    receive.buffer.bytes: '10485760'
    linger.ms: '10'
    transaction.timeout.ms: '36000000'
    isKerberized: '1'
    krb5Conf: '/opt/conf/krb5.conf'
    security_protocol: 'SASL_PLAINTEXT'
    useTicketCache: 'false'
    serviceName: 'kafka'
    keytab: '/opt/conf/test.keytab'
    principal: 'test@TEST.TEST.COM'
mysql:
  password: '123456'
  url: 'jdbc:mysql://1.1.1.1:3306/test'
  username: 'test'
processParallelism: 48
ismap: 'false'
iskeyby: 'true'
isprint: 'false'
flatMapParallelism: '240'
sinkParallelism: '240'
sourceParallelism: '240'
redis:
  block-when-exhausted: 'false'
  database: 0
  host: '1.1.1.1'
  password: '123456'
  port: 8250
  timeout: 6000000

2.2.utils

2.2.1.DBConn

java 复制代码
import java.sql.*;

public class DBConn {


    private static final String driver = "com.mysql.jdbc.Driver";		//mysql驱动
    private static Connection conn = null;

    private static PreparedStatement ps = null;
    private static ResultSet rs = null;
    private static final CallableStatement cs = null;

    /**
     * 连接数据库
     * @return
     */
    public static Connection conn(String url,String username,String password) {
        Connection conn = null;
        try {
            Class.forName(driver);  //加载数据库驱动
            try {
                conn = DriverManager.getConnection(url, username, password);  //连接数据库
            } catch (SQLException e) {
                e.printStackTrace();
            }
        } catch (ClassNotFoundException e) {
            e.printStackTrace();
        }
        return conn;
    }

    /**
     * 关闭数据库链接
     * @return
     */
    public static void close() {
        if(conn != null) {
            try {
                conn.close();  //关闭数据库链接
            } catch (SQLException e) {
                e.printStackTrace();
            }
        }
    }
}

2.2.2.CommonUtils

java 复制代码
@Slf4j
public class CommonUtils {
 	public static StreamExecutionEnvironment setCheckpoint(StreamExecutionEnvironment env) throws IOException {
//        ConfigTools.initConf("local");
        Map hdfsMap = (Map) ConfigTools.mapConf.get("hdfs");
        env.enableCheckpointing(((Integer) hdfsMap.get("checkpointing")).longValue(), CheckpointingMode.EXACTLY_ONCE);//这里会造成offset提交的延迟
        env.getCheckpointConfig().setMinPauseBetweenCheckpoints(((Integer) hdfsMap.get("minPauseBetweenCheckpoints")).longValue());
        env.getCheckpointConfig().setCheckpointTimeout(((Integer) hdfsMap.get("checkpointTimeout")).longValue());
        env.getCheckpointConfig().setMaxConcurrentCheckpoints((Integer) hdfsMap.get("maxConcurrentCheckpoints"));
        env.getCheckpointConfig().enableExternalizedCheckpoints(CheckpointConfig.ExternalizedCheckpointCleanup.RETAIN_ON_CANCELLATION);
        env.setRestartStrategy(RestartStrategies.fixedDelayRestart(
                (Integer) hdfsMap.get("restartStrategy"), // 尝试重启的次数,不宜过小,分布式任务很容易出问题(正常情况),建议3-5次
                Time.of(((Integer) hdfsMap.get("restartInterval")).longValue(), TimeUnit.SECONDS) // 延时
        ));
        //设置可容忍的检查点失败数,默认值为0表示不允许容忍任何检查点失败
        env.getCheckpointConfig().setTolerableCheckpointFailureNumber(2);

        //设置状态后端存储方式
        env.setStateBackend(new RocksDBStateBackend((String) hdfsMap.get("checkPointPath"), true));
//        env.setStateBackend(new FsStateBackend((String) hdfsMap.get("checkPointPath"), true));
//        env.setStateBackend(new HashMapStateBackend(());
        return env;
    }
    
    public static FlinkKafkaConsumer<ConsumerRecord<String, String>> getKafkaConsumer(Map<String, Object> kafkaConf) throws IOException {
        String[] topics = ((String) kafkaConf.get("topics")).split(",");
        log.info("监听的topic: {}", topics);
        Properties properties = new Properties();
        Map<String, String> kafkaProp = (Map<String, String>) kafkaConf.get("prop");
        for (String key : kafkaProp.keySet()) {
            properties.setProperty(key, kafkaProp.get(key).toString());
        }

        if (!StringUtils.isBlank((String) kafkaProp.get("isKerberized")) && "1".equals(kafkaProp.get("isKerberized"))) {
            System.setProperty("java.security.krb5.conf", kafkaProp.get("krb5Conf"));
            properties.put("security.protocol", kafkaProp.get("security_protocol"));
            properties.put("sasl.jaas.config", "com.sun.security.auth.module.Krb5LoginModule required "
                    + "useTicketCache=" + kafkaProp.get("useTicketCache") + " "

                    + "serviceName=\"" + kafkaProp.get("serviceName") + "\" "
                    + "useKeyTab=true "
                    + "keyTab=\"" + kafkaProp.get("keytab").toString() + "\" "
                    + "principal=\"" + kafkaProp.get("principal").toString() + "\";");
        }

        properties.put("key.serializer", "org.apache.flink.kafka.shaded.org.apache.kafka.common.serialization.ByteArrayDeserializer");
        properties.put("value.serializer", "org.apache.flink.kafka.shaded.org.apache.kafka.common.serialization.ByteArrayDeserializer");

        FlinkKafkaConsumer<ConsumerRecord<String, String>> consumerRecordFlinkKafkaConsumer = new FlinkKafkaConsumer<ConsumerRecord<String, String>>(Arrays.asList(topics), new KafkaDeserializationSchema<ConsumerRecord<String, String>>() {
            @Override
            public TypeInformation<ConsumerRecord<String, String>> getProducedType() {
                return TypeInformation.of(new TypeHint<ConsumerRecord<String, String>>() {
                });
            }

            @Override
            public boolean isEndOfStream(ConsumerRecord<String, String> stringStringConsumerRecord) {
                return false;
            }

            @Override
            public ConsumerRecord<String, String> deserialize(ConsumerRecord<byte[], byte[]> record) throws Exception {
                return new ConsumerRecord<String, String>(
                        record.topic(),
                        record.partition(),
                        record.offset(),
                        record.timestamp(),
                        record.timestampType(),
                        record.checksum(),
                        record.serializedKeySize(),
                        record.serializedValueSize(),
                        new String(record.key() == null ? "".getBytes(StandardCharsets.UTF_8) : record.key(), StandardCharsets.UTF_8),
                        new String(record.value() == null ? "{}".getBytes(StandardCharsets.UTF_8) : record.value(), StandardCharsets.UTF_8));
            }
        }, properties);
        return consumerRecordFlinkKafkaConsumer;
    }
    
	public static FlinkKafkaProducer getKafkaSink(Map conf) {
        Map kafkaProducer = (Map) conf.get("kafka-producer");
        Integer kafkaProducersPoolSize = (Integer) kafkaProducer.get("kafkaProducersPoolSize") == null ? 5 : (Integer) kafkaProducer.get("kafkaProducersPoolSize");

        /* conf/ 为配置文件相对yarn cache的相对路径,这里源kafka和目的kafka用的是同一个krb5.conf,如果源kafka和目的kafka使用不同的KDC,
        需要分别设置对应各自KDC的krb5.conf
        */
//        System.setProperty("java.security.krb5.conf", "conf/krb5.conf");

        String defaultTopic = (String) kafkaProducer.get("defaultTopic");
        Map<String, String> kafkaProp = (Map<String, String>) kafkaProducer.get("prop");
        Properties properties = new Properties();
        for (Map.Entry<String, String> entry : kafkaProp.entrySet()) {
            String mapKey = entry.getKey();
            String mapValue = entry.getValue();
            properties.put(mapKey, mapValue);
        }
        
        if (!StringUtils.isBlank((String) kafkaProp.get("isKerberized")) && "1".equals(kafkaProp.get("isKerberized"))) {
            System.setProperty("java.security.krb5.conf", kafkaProp.get("krb5Conf"));
            properties.put("security.protocol", kafkaProp.get("security_protocol"));
            properties.put("sasl.jaas.config", "com.sun.security.auth.module.Krb5LoginModule required "
                    + "useTicketCache=" + kafkaProp.get("useTicketCache") + " "

                    + "serviceName=\"" + kafkaProp.get("serviceName") + "\" "
                    + "useKeyTab=true "
                    + "keyTab=\"" + kafkaProp.get("keytab").toString() + "\" "
                    + "principal=\"" + kafkaProp.get("principal").toString() + "\";");
        }


        FlinkKafkaProducer<ConsumerRecord<String, String>> myProducer = new FlinkKafkaProducer<ConsumerRecord<String, String>>(
                defaultTopic,
                new ProductDeSerializationSchema(defaultTopic),
                properties,
                FlinkKafkaProducer.Semantic.AT_LEAST_ONCE, kafkaProducersPoolSize);
        return myProducer;
    }
}

2.3.conf

2.3.1.ConfigTools

java 复制代码
@Slf4j
public class ConfigTools {

    public static Map<String, Object> mapConf;

    /**
     * 获取对应的配置文件
     *
     * @param option
     */
    public static void initConf(String option) {
        String confFile = "/flink_backup_" + option + ".yml";
        try {
            InputStream dumpFile = ConfigTools.class.getResourceAsStream(confFile);
            mapConf = Yaml.loadType(dumpFile, HashMap.class);
        } catch (Exception e) {
            e.printStackTrace();
        }
    }

    /**
     * 获取对应的配置文件
     *
     * @param option
     */
    public static void initMySqlConf(String option, Class clazz) {
        String className = clazz.getName();
        String confFile = "/appconfig.yml";
        Map<String, String> mysqlConf;
        try {
            InputStream dumpFile = ConfigTools.class.getResourceAsStream(confFile);
            mysqlConf = Yaml.loadType(dumpFile, HashMap.class);
            String username = mysqlConf.get("mysql.username");
            String password = mysqlConf.get("mysql.password");
            String url = mysqlConf.get("mysql.url");
            Connection conn = DBConn.conn(url, username, password);
            Map<String, Object> config = getConfig(conn, className, option);

            if (config == null || config.size() == 0) {
                log.error("获取配置文件失败");
                return;
            }

            mapConf = config;

        } catch (Exception e) {
            e.printStackTrace();
        }

    }

    private static Map<String, Object> getConfig(Connection conn, String className, String option) throws SQLException {
        PreparedStatement preparedStatement = null;
        try {
            String sql = "select config_context from app_config where app_name = '%s' and config_name = '%s'";
            preparedStatement = conn.prepareStatement(String.format(sql, className, option));

            ResultSet rs = preparedStatement.executeQuery();

            Map<String, String> map = new LinkedHashMap<>();

            String config_context = "";
            while (rs.next()) {
                config_context = rs.getString("config_context");
            }
            System.out.println("配置信息config_context:"+config_context);
//            if(StringUtils.isNotBlank(config_context)){
//                System.out.println(JSONObject.toJSONString(JSONObject.parseObject(config_context), SerializerFeature.PrettyFormat));
//            }
            Map<String, Object> mysqlConfMap = JSON.parseObject(config_context, Map.class);
            return mysqlConfMap;
        }finally {
            if (preparedStatement != null) {
                preparedStatement.close();
            }
            if (conn != null) {
                conn.close();
            }
        }
    }

    public static void main(String[] args) {
//        initMySqlConf("local", TboxPeriodBackoutA3K.class);
        initConf("local");
        String s = JSON.toJSONString(mapConf);
        System.out.println(s);
    }
}

2.4.serialier

2.4.1.ProductDeSerializationSchema

java 复制代码
/**
 * flink生产者序列化类
 */
public class ProductDeSerializationSchema implements KafkaSerializationSchema<ConsumerRecord<String, String>> {
    private String topic;
//    public Map conf;
//    public Map<String, String> map = new HashMap<>();

    public ProductDeSerializationSchema(String topic) {
        this.topic = topic;
    }

//    @Override
//    public void open(SerializationSchema.InitializationContext context) throws Exception {
//        Map kafkaProducer = (Map) conf.get("kafka-producer");
//        Map kafkaConsumer = (Map) conf.get("kafka-consumer");
//        List<String> sinkTopics = Arrays.asList(((String) kafkaProducer.get("outPutTopic")).split(","));
//        List<String> sourceTopics = Arrays.asList(((String) kafkaConsumer.get("topics")).split(","));
//        for (int i = 0; i < sourceTopics.size(); i++) {
//            map.put(sourceTopics.get(i), sinkTopics.get(i));
//        }
//    }

    @Override
    public ProducerRecord<byte[], byte[]> serialize(ConsumerRecord<String, String> record, @Nullable Long aLong) {
        return new ProducerRecord<byte[], byte[]>(topic, record.key().getBytes(), record.value().getBytes());
    }
}

2.5.kafka2kafka

2.5.1.Kafka2Kafka

java 复制代码
public class Kafka2Kafka {
    public static Logger logger = Logger.getLogger(Kafka2Kafka.class);

    public static void main(String[] args) throws Exception {
        ConfigTools.initMySqlConf(args[0], Kafka2Kafka.class);
//        ConfigTools.initConf("local");
        //获取环境
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment().disableOperatorChaining();
        //配置checkpoint
        CommonUtils.setCheckpoint(env);
        FlinkKafkaConsumer<ConsumerRecord<String, String>> myConsumer = CommonUtils.getKafkaConsumer();
        //获取mysql配置文件
        Map<String, Object> mapConf = ConfigTools.mapConf;
        DataStream<ConsumerRecord<String, String>> stream = env.addSource(myConsumer);
        //sink
        FlinkKafkaProducer kafkaSink = CommonUtils.getKafkaSink(mapConf);
        stream.addSink(kafkaSink);
        //执行
        env.execute();
    }
}
相关推荐
东方巴黎~Sunsiny10 分钟前
如何优化Kafka消费者的性能
分布式·kafka
NAMELZX10 分钟前
Kafka常见问题及处理
分布式·kafka
我的K84091 小时前
Flink整合Hive、Mysql、Hbase、Kafka
hive·mysql·flink
jlting1951 小时前
Kafka--关于broker的夺命连环问
分布式·kafka
东方巴黎~Sunsiny12 小时前
当kafka消费的数据滞后1000条时,打印告警信息
分布式·kafka·linq
东方巴黎~Sunsiny12 小时前
⚙️ 如何调整重试策略以适应不同的业务需求?
java·数据库·kafka
sj116373940312 小时前
Kafka新节点加入集群操作指南
分布式·kafka
东方巴黎~Sunsiny12 小时前
kafka消费数据太慢了,给优化下
分布式·kafka·linq
东方巴黎~Sunsiny14 小时前
详解kafka消息发送重试机制的案例
分布式·kafka·linq
Jeff-Jiang14 小时前
Kafka、RabbitMQ、RocketMQ对比
kafka·rabbitmq·rocketmq