工具系列:TensorFlow决策森林_(7)检查和调试决策森林模型

文章目录

在本文中,您将学习如何直接检查和创建模型的结构。我们假设您已经熟悉了在初级和中级介绍的概念。

在本文中,您将:

  1. 训练一个随机森林模型并以编程方式访问其结构。

  2. 手动创建一个随机森林模型,并将其用作经典模型。

设置

python 复制代码
# 安装 TensorFlow Decision Forests 库
!pip install tensorflow_decision_forests

# 安装 wurlitzer 库,用于显示训练日志
!pip install wurlitzer
复制代码
Collecting tensorflow_decision_forests
  Using cached tensorflow_decision_forests-1.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.2 MB)
Requirement already satisfied: wheel in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow_decision_forests) (0.37.1)
Requirement already satisfied: numpy in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow_decision_forests) (1.24.0rc2)
Requirement already satisfied: absl-py in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow_decision_forests) (1.3.0)
Requirement already satisfied: six in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow_decision_forests) (1.16.0)
Collecting wurlitzer
  Using cached wurlitzer-3.0.3-py3-none-any.whl (7.3 kB)
Requirement already satisfied: pandas in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow_decision_forests) (1.5.2)
Requirement already satisfied: tensorflow~=2.11.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow_decision_forests) (2.11.0)
Requirement already satisfied: setuptools in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow~=2.11.0->tensorflow_decision_forests) (65.6.3)
Requirement already satisfied: gast<=0.4.0,>=0.2.1 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow~=2.11.0->tensorflow_decision_forests) (0.4.0)
Requirement already satisfied: h5py>=2.9.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow~=2.11.0->tensorflow_decision_forests) (3.7.0)
Requirement already satisfied: libclang>=13.0.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow~=2.11.0->tensorflow_decision_forests) (14.0.6)
Requirement already satisfied: flatbuffers>=2.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow~=2.11.0->tensorflow_decision_forests) (22.12.6)
Requirement already satisfied: tensorboard<2.12,>=2.11 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow~=2.11.0->tensorflow_decision_forests) (2.11.0)
Requirement already satisfied: typing-extensions>=3.6.6 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow~=2.11.0->tensorflow_decision_forests) (4.4.0)
Requirement already satisfied: keras<2.12,>=2.11.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow~=2.11.0->tensorflow_decision_forests) (2.11.0)
Requirement already satisfied: wrapt>=1.11.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow~=2.11.0->tensorflow_decision_forests) (1.14.1)
Requirement already satisfied: astunparse>=1.6.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow~=2.11.0->tensorflow_decision_forests) (1.6.3)
Requirement already satisfied: tensorflow-estimator<2.12,>=2.11.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow~=2.11.0->tensorflow_decision_forests) (2.11.0)
Requirement already satisfied: protobuf<3.20,>=3.9.2 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow~=2.11.0->tensorflow_decision_forests) (3.19.6)
Requirement already satisfied: opt-einsum>=2.3.2 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow~=2.11.0->tensorflow_decision_forests) (3.3.0)
Requirement already satisfied: grpcio<2.0,>=1.24.3 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow~=2.11.0->tensorflow_decision_forests) (1.51.1)
Requirement already satisfied: packaging in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow~=2.11.0->tensorflow_decision_forests) (22.0)
Requirement already satisfied: termcolor>=1.1.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow~=2.11.0->tensorflow_decision_forests) (2.1.1)
Requirement already satisfied: tensorflow-io-gcs-filesystem>=0.23.1 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow~=2.11.0->tensorflow_decision_forests) (0.28.0)
Requirement already satisfied: google-pasta>=0.1.1 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow~=2.11.0->tensorflow_decision_forests) (0.2.0)
Requirement already satisfied: python-dateutil>=2.8.1 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from pandas->tensorflow_decision_forests) (2.8.2)
Requirement already satisfied: pytz>=2020.1 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from pandas->tensorflow_decision_forests) (2022.6)
Requirement already satisfied: werkzeug>=1.0.1 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorboard<2.12,>=2.11->tensorflow~=2.11.0->tensorflow_decision_forests) (2.2.2)
Requirement already satisfied: markdown>=2.6.8 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorboard<2.12,>=2.11->tensorflow~=2.11.0->tensorflow_decision_forests) (3.4.1)
Requirement already satisfied: tensorboard-plugin-wit>=1.6.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorboard<2.12,>=2.11->tensorflow~=2.11.0->tensorflow_decision_forests) (1.8.1)
Requirement already satisfied: tensorboard-data-server<0.7.0,>=0.6.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorboard<2.12,>=2.11->tensorflow~=2.11.0->tensorflow_decision_forests) (0.6.1)
Requirement already satisfied: requests<3,>=2.21.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorboard<2.12,>=2.11->tensorflow~=2.11.0->tensorflow_decision_forests) (2.28.1)
Requirement already satisfied: google-auth-oauthlib<0.5,>=0.4.1 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorboard<2.12,>=2.11->tensorflow~=2.11.0->tensorflow_decision_forests) (0.4.6)
Requirement already satisfied: google-auth<3,>=1.6.3 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorboard<2.12,>=2.11->tensorflow~=2.11.0->tensorflow_decision_forests) (2.15.0)
Requirement already satisfied: cachetools<6.0,>=2.0.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from google-auth<3,>=1.6.3->tensorboard<2.12,>=2.11->tensorflow~=2.11.0->tensorflow_decision_forests) (5.2.0)
Requirement already satisfied: rsa<5,>=3.1.4 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from google-auth<3,>=1.6.3->tensorboard<2.12,>=2.11->tensorflow~=2.11.0->tensorflow_decision_forests) (4.9)
Requirement already satisfied: pyasn1-modules>=0.2.1 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from google-auth<3,>=1.6.3->tensorboard<2.12,>=2.11->tensorflow~=2.11.0->tensorflow_decision_forests) (0.3.0rc1)
Requirement already satisfied: requests-oauthlib>=0.7.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from google-auth-oauthlib<0.5,>=0.4.1->tensorboard<2.12,>=2.11->tensorflow~=2.11.0->tensorflow_decision_forests) (1.3.1)
Requirement already satisfied: importlib-metadata>=4.4 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from markdown>=2.6.8->tensorboard<2.12,>=2.11->tensorflow~=2.11.0->tensorflow_decision_forests) (5.1.0)
Requirement already satisfied: charset-normalizer<3,>=2 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from requests<3,>=2.21.0->tensorboard<2.12,>=2.11->tensorflow~=2.11.0->tensorflow_decision_forests) (2.1.1)
Requirement already satisfied: idna<4,>=2.5 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from requests<3,>=2.21.0->tensorboard<2.12,>=2.11->tensorflow~=2.11.0->tensorflow_decision_forests) (3.4)
Requirement already satisfied: certifi>=2017.4.17 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from requests<3,>=2.21.0->tensorboard<2.12,>=2.11->tensorflow~=2.11.0->tensorflow_decision_forests) (2022.12.7)
Requirement already satisfied: urllib3<1.27,>=1.21.1 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from requests<3,>=2.21.0->tensorboard<2.12,>=2.11->tensorflow~=2.11.0->tensorflow_decision_forests) (1.26.13)
Requirement already satisfied: MarkupSafe>=2.1.1 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from werkzeug>=1.0.1->tensorboard<2.12,>=2.11->tensorflow~=2.11.0->tensorflow_decision_forests) (2.1.1)
Requirement already satisfied: zipp>=0.5 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from importlib-metadata>=4.4->markdown>=2.6.8->tensorboard<2.12,>=2.11->tensorflow~=2.11.0->tensorflow_decision_forests) (3.11.0)
Requirement already satisfied: pyasn1<0.6.0,>=0.4.6 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from pyasn1-modules>=0.2.1->google-auth<3,>=1.6.3->tensorboard<2.12,>=2.11->tensorflow~=2.11.0->tensorflow_decision_forests) (0.5.0rc2)
Requirement already satisfied: oauthlib>=3.0.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from requests-oauthlib>=0.7.0->google-auth-oauthlib<0.5,>=0.4.1->tensorboard<2.12,>=2.11->tensorflow~=2.11.0->tensorflow_decision_forests) (3.2.2)
Installing collected packages: wurlitzer, tensorflow_decision_forests
Successfully installed tensorflow_decision_forests-1.1.0 wurlitzer-3.0.3
Requirement already satisfied: wurlitzer in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (3.0.3)
python 复制代码
# 导入tensorflow_decision_forests库
import tensorflow_decision_forests as tfdf

# 导入os、numpy、pandas、tensorflow、matplotlib.pyplot、math、collections库
import os
import numpy as np
import pandas as pd
import tensorflow as tf
import matplotlib.pyplot as plt
import math
import collections
复制代码
2022-12-14 12:24:51.050867: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer.so.7'; dlerror: libnvinfer.so.7: cannot open shared object file: No such file or directory
2022-12-14 12:24:51.050964: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer_plugin.so.7'; dlerror: libnvinfer_plugin.so.7: cannot open shared object file: No such file or directory
2022-12-14 12:24:51.050973: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly.

隐藏的代码单元格限制了在colab中的输出高度。

python 复制代码
# 导入所需的模块
from IPython.core.magic import register_line_magic
from IPython.display import Javascript
from IPython.display import display as ipy_display

# 定义一个魔术命令,用于设置单元格的最大高度
@register_line_magic
def set_cell_height(size):
  # 调用Javascript代码,设置单元格的最大高度
  ipy_display(
      Javascript("google.colab.output.setIframeHeight(0, true, {maxHeight: " +
                 str(size) + "})"))

训练一个简单的随机森林

我们像在初学者colab中一样训练一个随机森林。

python 复制代码
# 下载数据集
!wget -q https://storage.googleapis.com/download.tensorflow.org/data/palmer_penguins/penguins.csv -O /tmp/penguins.csv

# 将数据集加载到Pandas Dataframe中
dataset_df = pd.read_csv("/tmp/penguins.csv")

# 显示前三个示例
print(dataset_df.head(3))

# 将Pandas Dataframe转换为tf数据集
dataset_tf = tfdf.keras.pd_dataframe_to_tf_dataset(dataset_df, label="species")

# 训练随机森林模型
model = tfdf.keras.RandomForestModel(compute_oob_variable_importances=True)
model.fit(x=dataset_tf)
复制代码
  species     island  bill_length_mm  bill_depth_mm  flipper_length_mm  \
0  Adelie  Torgersen            39.1           18.7              181.0   
1  Adelie  Torgersen            39.5           17.4              186.0   
2  Adelie  Torgersen            40.3           18.0              195.0   

   body_mass_g     sex  year  
0       3750.0    male  2007  
1       3800.0  female  2007  
2       3250.0  female  2007  
Warning: The `num_threads` constructor argument is not set and the number of CPU is os.cpu_count()=32 > 32. Setting num_threads to 32. Set num_threads manually to use more than 32 cpus.


WARNING:absl:The `num_threads` constructor argument is not set and the number of CPU is os.cpu_count()=32 > 32. Setting num_threads to 32. Set num_threads manually to use more than 32 cpus.


Use /tmpfs/tmp/tmpvr7urazn as temporary training directory
Reading training dataset...
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.9/site-packages/tensorflow/python/autograph/pyct/static_analysis/liveness.py:83: Analyzer.lamba_check (from tensorflow.python.autograph.pyct.static_analysis.liveness) is deprecated and will be removed after 2023-09-23.
Instructions for updating:
Lambda fuctions will be no more assumed to be used in the statement where they are used, or at least in the same block. https://github.com/tensorflow/tensorflow/issues/56089


WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.9/site-packages/tensorflow/python/autograph/pyct/static_analysis/liveness.py:83: Analyzer.lamba_check (from tensorflow.python.autograph.pyct.static_analysis.liveness) is deprecated and will be removed after 2023-09-23.
Instructions for updating:
Lambda fuctions will be no more assumed to be used in the statement where they are used, or at least in the same block. https://github.com/tensorflow/tensorflow/issues/56089


Training dataset read in 0:00:02.961832. Found 344 examples.
Training model...
Model trained in 0:00:00.093680
Compiling model...


[INFO 2022-12-14T12:24:58.955519768+00:00 kernel.cc:1175] Loading model from path /tmpfs/tmp/tmpvr7urazn/model/ with prefix fb8057db01324481
[INFO 2022-12-14T12:24:58.971817533+00:00 abstract_model.cc:1306] Engine "RandomForestGeneric" built
[INFO 2022-12-14T12:24:58.97187255+00:00 kernel.cc:1021] Use fast generic engine


WARNING:tensorflow:AutoGraph could not transform <function simple_ml_inference_op_with_handle at 0x7f9b54f644c0> and will run it as-is.
Please report this to the TensorFlow team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output.
Cause: could not get source code
To silence this warning, decorate the function with @tf.autograph.experimental.do_not_convert


WARNING:tensorflow:AutoGraph could not transform <function simple_ml_inference_op_with_handle at 0x7f9b54f644c0> and will run it as-is.
Please report this to the TensorFlow team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output.
Cause: could not get source code
To silence this warning, decorate the function with @tf.autograph.experimental.do_not_convert


WARNING: AutoGraph could not transform <function simple_ml_inference_op_with_handle at 0x7f9b54f644c0> and will run it as-is.
Please report this to the TensorFlow team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output.
Cause: could not get source code
To silence this warning, decorate the function with @tf.autograph.experimental.do_not_convert
Model compiled.





<keras.callbacks.History at 0x7f9b5394c6d0>

请注意模型构造函数中的compute_oob_variable_importances=True超参数。此选项在训练过程中计算袋外(OOB)变量重要性。这是随机森林模型的一种流行的排列变量重要性

计算OOB变量重要性不会影响最终模型,但会减慢大型数据集的训练速度。

请检查模型摘要:

python 复制代码
# 打印模型的概述信息
model.summary()
复制代码
<IPython.core.display.Javascript object>


Model: "random_forest_model"
_________________________________________________________________
 Layer (type)                Output Shape              Param #   
=================================================================
=================================================================
Total params: 1
Trainable params: 0
Non-trainable params: 1
_________________________________________________________________
Type: "RANDOM_FOREST"
Task: CLASSIFICATION
Label: "__LABEL"

Input Features (7):
	bill_depth_mm
	bill_length_mm
	body_mass_g
	flipper_length_mm
	island
	sex
	year

No weights

Variable Importance: MEAN_DECREASE_IN_ACCURACY:
    1.    "bill_length_mm"  0.151163 ################
    2.            "island"  0.008721 #
    3.     "bill_depth_mm"  0.000000 
    4.       "body_mass_g"  0.000000 
    5.               "sex"  0.000000 
    6.              "year"  0.000000 
    7. "flipper_length_mm" -0.002907 

Variable Importance: MEAN_DECREASE_IN_AP_1_VS_OTHERS:
    1.    "bill_length_mm"  0.083305 ################
    2.            "island"  0.007664 #
    3. "flipper_length_mm"  0.003400 
    4.     "bill_depth_mm"  0.002741 
    5.       "body_mass_g"  0.000722 
    6.               "sex"  0.000644 
    7.              "year"  0.000000 

Variable Importance: MEAN_DECREASE_IN_AP_2_VS_OTHERS:
    1.    "bill_length_mm"  0.508510 ################
    2.            "island"  0.023487 
    3.     "bill_depth_mm"  0.007744 
    4. "flipper_length_mm"  0.006008 
    5.       "body_mass_g"  0.003017 
    6.               "sex"  0.001537 
    7.              "year" -0.000245 

Variable Importance: MEAN_DECREASE_IN_AP_3_VS_OTHERS:
    1.            "island"  0.002192 ################
    2.    "bill_length_mm"  0.001572 ############
    3.     "bill_depth_mm"  0.000497 #######
    4.               "sex"  0.000000 ####
    5.              "year"  0.000000 ####
    6.       "body_mass_g" -0.000053 ####
    7. "flipper_length_mm" -0.000890 

Variable Importance: MEAN_DECREASE_IN_AUC_1_VS_OTHERS:
    1.    "bill_length_mm"  0.071306 ################
    2.            "island"  0.007299 #
    3. "flipper_length_mm"  0.004506 #
    4.     "bill_depth_mm"  0.002124 
    5.       "body_mass_g"  0.000548 
    6.               "sex"  0.000480 
    7.              "year"  0.000000 

Variable Importance: MEAN_DECREASE_IN_AUC_2_VS_OTHERS:
    1.    "bill_length_mm"  0.108642 ################
    2.            "island"  0.014493 ##
    3.     "bill_depth_mm"  0.007406 #
    4. "flipper_length_mm"  0.005195 
    5.       "body_mass_g"  0.001012 
    6.               "sex"  0.000480 
    7.              "year" -0.000053 

Variable Importance: MEAN_DECREASE_IN_AUC_3_VS_OTHERS:
    1.            "island"  0.002126 ################
    2.    "bill_length_mm"  0.001393 ###########
    3.     "bill_depth_mm"  0.000293 #####
    4.               "sex"  0.000000 ###
    5.              "year"  0.000000 ###
    6.       "body_mass_g" -0.000037 ###
    7. "flipper_length_mm" -0.000550 

Variable Importance: MEAN_DECREASE_IN_PRAUC_1_VS_OTHERS:
    1.    "bill_length_mm"  0.083122 ################
    2.            "island"  0.010887 ##
    3. "flipper_length_mm"  0.003425 
    4.     "bill_depth_mm"  0.002731 
    5.       "body_mass_g"  0.000719 
    6.               "sex"  0.000641 
    7.              "year"  0.000000 

Variable Importance: MEAN_DECREASE_IN_PRAUC_2_VS_OTHERS:
    1.    "bill_length_mm"  0.497611 ################
    2.            "island"  0.024045 
    3.     "bill_depth_mm"  0.007734 
    4. "flipper_length_mm"  0.006017 
    5.       "body_mass_g"  0.003000 
    6.               "sex"  0.001528 
    7.              "year" -0.000243 

Variable Importance: MEAN_DECREASE_IN_PRAUC_3_VS_OTHERS:
    1.            "island"  0.002187 ################
    2.    "bill_length_mm"  0.001568 ############
    3.     "bill_depth_mm"  0.000495 #######
    4.               "sex"  0.000000 ####
    5.              "year"  0.000000 ####
    6.       "body_mass_g" -0.000053 ####
    7. "flipper_length_mm" -0.000886 

Variable Importance: MEAN_MIN_DEPTH:
    1.           "__LABEL"  3.479602 ################
    2.              "year"  3.463891 ###############
    3.               "sex"  3.430498 ###############
    4.       "body_mass_g"  2.898112 ###########
    5.            "island"  2.388925 ########
    6.     "bill_depth_mm"  2.336100 #######
    7.    "bill_length_mm"  1.282960 
    8. "flipper_length_mm"  1.270079 

Variable Importance: NUM_AS_ROOT:
    1. "flipper_length_mm" 157.000000 ################
    2.    "bill_length_mm" 76.000000 #######
    3.     "bill_depth_mm" 52.000000 #####
    4.            "island" 12.000000 
    5.       "body_mass_g"  3.000000 

Variable Importance: NUM_NODES:
    1.    "bill_length_mm" 778.000000 ################
    2.     "bill_depth_mm" 463.000000 #########
    3. "flipper_length_mm" 414.000000 ########
    4.            "island" 342.000000 ######
    5.       "body_mass_g" 338.000000 ######
    6.               "sex" 36.000000 
    7.              "year" 19.000000 

Variable Importance: SUM_SCORE:
    1.    "bill_length_mm" 36515.793787 ################
    2. "flipper_length_mm" 35120.434174 ###############
    3.            "island" 14669.408395 ######
    4.     "bill_depth_mm" 14515.446617 ######
    5.       "body_mass_g" 3485.330881 #
    6.               "sex" 354.201073 
    7.              "year" 49.737758 



Winner takes all: true
Out-of-bag evaluation: accuracy:0.976744 logloss:0.0678223
Number of trees: 300
Total number of nodes: 5080

Number of nodes by tree:
Count: 300 Average: 16.9333 StdDev: 3.10197
Min: 11 Max: 31 Ignored: 0
----------------------------------------------
[ 11, 12)  6   2.00%   2.00% #
[ 12, 13)  0   0.00%   2.00%
[ 13, 14) 46  15.33%  17.33% #####
[ 14, 15)  0   0.00%  17.33%
[ 15, 16) 70  23.33%  40.67% ########
[ 16, 17)  0   0.00%  40.67%
[ 17, 18) 84  28.00%  68.67% ##########
[ 18, 19)  0   0.00%  68.67%
[ 19, 20) 46  15.33%  84.00% #####
[ 20, 21)  0   0.00%  84.00%
[ 21, 22) 30  10.00%  94.00% ####
[ 22, 23)  0   0.00%  94.00%
[ 23, 24) 13   4.33%  98.33% ##
[ 24, 25)  0   0.00%  98.33%
[ 25, 26)  2   0.67%  99.00%
[ 26, 27)  0   0.00%  99.00%
[ 27, 28)  2   0.67%  99.67%
[ 28, 29)  0   0.00%  99.67%
[ 29, 30)  0   0.00%  99.67%
[ 30, 31]  1   0.33% 100.00%

Depth by leafs:
Count: 2690 Average: 3.53271 StdDev: 1.06789
Min: 2 Max: 7 Ignored: 0
----------------------------------------------
[ 2, 3) 545  20.26%  20.26% ######
[ 3, 4) 747  27.77%  48.03% ########
[ 4, 5) 888  33.01%  81.04% ##########
[ 5, 6) 444  16.51%  97.55% #####
[ 6, 7)  62   2.30%  99.85% #
[ 7, 7]   4   0.15% 100.00%

Number of training obs by leaf:
Count: 2690 Average: 38.3643 StdDev: 44.8651
Min: 5 Max: 155 Ignored: 0
----------------------------------------------
[   5,  12) 1474  54.80%  54.80% ##########
[  12,  20)  124   4.61%  59.41% #
[  20,  27)   48   1.78%  61.19%
[  27,  35)   74   2.75%  63.94% #
[  35,  42)   58   2.16%  66.10%
[  42,  50)   85   3.16%  69.26% #
[  50,  57)   96   3.57%  72.83% #
[  57,  65)   87   3.23%  76.06% #
[  65,  72)   49   1.82%  77.88%
[  72,  80)   23   0.86%  78.74%
[  80,  88)   30   1.12%  79.85%
[  88,  95)   23   0.86%  80.71%
[  95, 103)   42   1.56%  82.27%
[ 103, 110)   62   2.30%  84.57%
[ 110, 118)  115   4.28%  88.85% #
[ 118, 125)  115   4.28%  93.12% #
[ 125, 133)   98   3.64%  96.77% #
[ 133, 140)   49   1.82%  98.59%
[ 140, 148)   31   1.15%  99.74%
[ 148, 155]    7   0.26% 100.00%

Attribute in nodes:
	778 : bill_length_mm [NUMERICAL]
	463 : bill_depth_mm [NUMERICAL]
	414 : flipper_length_mm [NUMERICAL]
	342 : island [CATEGORICAL]
	338 : body_mass_g [NUMERICAL]
	36 : sex [CATEGORICAL]
	19 : year [NUMERICAL]

Attribute in nodes with depth <= 0:
	157 : flipper_length_mm [NUMERICAL]
	76 : bill_length_mm [NUMERICAL]
	52 : bill_depth_mm [NUMERICAL]
	12 : island [CATEGORICAL]
	3 : body_mass_g [NUMERICAL]

Attribute in nodes with depth <= 1:
	250 : bill_length_mm [NUMERICAL]
	244 : flipper_length_mm [NUMERICAL]
	183 : bill_depth_mm [NUMERICAL]
	170 : island [CATEGORICAL]
	53 : body_mass_g [NUMERICAL]

Attribute in nodes with depth <= 2:
	462 : bill_length_mm [NUMERICAL]
	320 : flipper_length_mm [NUMERICAL]
	310 : bill_depth_mm [NUMERICAL]
	287 : island [CATEGORICAL]
	162 : body_mass_g [NUMERICAL]
	9 : sex [CATEGORICAL]
	5 : year [NUMERICAL]

Attribute in nodes with depth <= 3:
	669 : bill_length_mm [NUMERICAL]
	410 : bill_depth_mm [NUMERICAL]
	383 : flipper_length_mm [NUMERICAL]
	328 : island [CATEGORICAL]
	286 : body_mass_g [NUMERICAL]
	32 : sex [CATEGORICAL]
	10 : year [NUMERICAL]

Attribute in nodes with depth <= 5:
	778 : bill_length_mm [NUMERICAL]
	462 : bill_depth_mm [NUMERICAL]
	413 : flipper_length_mm [NUMERICAL]
	342 : island [CATEGORICAL]
	338 : body_mass_g [NUMERICAL]
	36 : sex [CATEGORICAL]
	19 : year [NUMERICAL]

Condition type in nodes:
	2012 : HigherCondition
	378 : ContainsBitmapCondition
Condition type in nodes with depth <= 0:
	288 : HigherCondition
	12 : ContainsBitmapCondition
Condition type in nodes with depth <= 1:
	730 : HigherCondition
	170 : ContainsBitmapCondition
Condition type in nodes with depth <= 2:
	1259 : HigherCondition
	296 : ContainsBitmapCondition
Condition type in nodes with depth <= 3:
	1758 : HigherCondition
	360 : ContainsBitmapCondition
Condition type in nodes with depth <= 5:
	2010 : HigherCondition
	378 : ContainsBitmapCondition
Node format: NOT_SET

Training OOB:
	trees: 1, Out-of-bag evaluation: accuracy:0.964286 logloss:1.28727
	trees: 13, Out-of-bag evaluation: accuracy:0.959064 logloss:0.4869
	trees: 31, Out-of-bag evaluation: accuracy:0.95614 logloss:0.284603
	trees: 54, Out-of-bag evaluation: accuracy:0.973837 logloss:0.175283
	trees: 73, Out-of-bag evaluation: accuracy:0.97093 logloss:0.175816
	trees: 85, Out-of-bag evaluation: accuracy:0.973837 logloss:0.171781
	trees: 96, Out-of-bag evaluation: accuracy:0.97093 logloss:0.077417
	trees: 116, Out-of-bag evaluation: accuracy:0.976744 logloss:0.0761788
	trees: 127, Out-of-bag evaluation: accuracy:0.976744 logloss:0.0745239
	trees: 137, Out-of-bag evaluation: accuracy:0.976744 logloss:0.0753508
	trees: 150, Out-of-bag evaluation: accuracy:0.976744 logloss:0.0741464
	trees: 160, Out-of-bag evaluation: accuracy:0.976744 logloss:0.0749481
	trees: 170, Out-of-bag evaluation: accuracy:0.979651 logloss:0.0719624
	trees: 190, Out-of-bag evaluation: accuracy:0.976744 logloss:0.0711787
	trees: 203, Out-of-bag evaluation: accuracy:0.976744 logloss:0.0701121
	trees: 213, Out-of-bag evaluation: accuracy:0.976744 logloss:0.0682979
	trees: 224, Out-of-bag evaluation: accuracy:0.976744 logloss:0.0689686
	trees: 248, Out-of-bag evaluation: accuracy:0.976744 logloss:0.0674086
	trees: 260, Out-of-bag evaluation: accuracy:0.976744 logloss:0.068218
	trees: 270, Out-of-bag evaluation: accuracy:0.976744 logloss:0.0680733
	trees: 280, Out-of-bag evaluation: accuracy:0.976744 logloss:0.0685965
	trees: 290, Out-of-bag evaluation: accuracy:0.976744 logloss:0.0683421
	trees: 300, Out-of-bag evaluation: accuracy:0.976744 logloss:0.0678223

注意,变量重要性有多个名称为MEAN_DECREASE_IN_*

绘制模型

接下来,绘制模型。

随机森林是一个庞大的模型(该模型有300棵树和约5k个节点;请参见上面的摘要)。因此,只绘制第一棵树,并将节点限制在深度3。

python 复制代码
# 使用model_plotter模块中的plot_model_in_colab函数来绘制模型
# 参数model表示要绘制的模型
# 参数tree_idx表示要绘制的树的索引,这里设置为0表示绘制第一棵树
# 参数max_depth表示要绘制的树的最大深度,这里设置为3表示绘制到第三层
tfdf.model_plotter.plot_model_in_colab(model, tree_idx=0, max_depth=3)

/**

  • Plotting of decision trees generated by TF-DF.
  • A tree is a recursive structure of node objects.
  • A node contains one or more of the following components:
    • A value: Representing the output of the node. If the node is not a leaf,
复制代码
   the value is only present for analysis i.e. it is not used for
复制代码
   predictions.
    • A condition : For non-leaf nodes, the condition (also known as split)
复制代码
   defines a binary test to branch to the positive or negative child.
    • An explanation: Generally a plot showing the relation between the label
复制代码
   and the condition to give insights about the effect of the condition.
    • Two children : For non-leaf nodes, the children nodes. The first
复制代码
   children (i.e. "node.children[0]") is the negative children (drawn in
复制代码
   red). The second children is the positive one (drawn in green).

*/

/**

  • Plots a single decision tree into a DOM element.
  • @param {!options} options Dictionary of configurations.
  • @param {!tree} raw_tree Recursive tree structure.
  • @param {string} canvas_id Id of the output dom element.
    */
    function display_tree(options, raw_tree, canvas_id) {
    console.log(options);

// Determine the node placement.

const tree_struct = d3.tree().nodeSize(

options.node_y_offset, options.node_x_offset\])(d3.hierarchy(raw_tree)); // Boundaries of the node placement. let x_min = Infinity; let x_max = -x_min; let y_min = Infinity; let y_max = -x_min; tree_struct.each(d =\> { if (d.x \> x_max) x_max = d.x; if (d.x \< x_min) x_min = d.x; if (d.y \> y_max) y_max = d.y; if (d.y \< y_min) y_min = d.y; }); // Size of the plot. const width = y_max - y_min + options.node_x_size + options.margin \* 2; const height = x_max - x_min + options.node_y_size + options.margin \* 2 + options.node_y_offset - options.node_y_size; const plot = d3.select(canvas_id); // Tool tip options.tooltip = plot.append('div') .attr('width', 100) .attr('height', 100) .style('padding', '4px') .style('background', '#fff') .style('box-shadow', '4px 4px 0px rgba(0,0,0,0.1)') .style('border', '1px solid black') .style('font-family', 'sans-serif') .style('font-size', options.font_size) .style('position', 'absolute') .style('z-index', '10') .attr('pointer-events', 'none') .style('display', 'none'); // Create canvas const svg = plot.append('svg').attr('width', width).attr('height', height); const graph = svg.style('overflow', 'visible') .append('g') .attr('font-family', 'sans-serif') .attr('font-size', options.font_size) .attr( 'transform', () =\> `translate(${options.margin},${ - x_min + options.node_y_offset / 2 + options.margin})`); // Plot bounding box. if (options.show_plot_bounding_box) { svg.append('rect') .attr('width', width) .attr('height', height) .attr('fill', 'none') .attr('stroke-width', 1.0) .attr('stroke', 'black'); } // Draw the edges. display_edges(options, graph, tree_struct); // Draw the nodes. display_nodes(options, graph, tree_struct); } /\*\* * Draw the nodes of the tree. * @param {!options} options Dictionary of configurations. * @param {!graph} graph D3 search handle containing the graph. * @param {!tree_struct} tree_struct Structure of the tree (node placement, * data, etc.). \*/ function display_nodes(options, graph, tree_struct) { const nodes = graph.append('g') .selectAll('g') .data(tree_struct.descendants()) .join('g') .attr('transform', d =\> `translate(${d.y},${d.x})`); nodes.append('rect') .attr('x', 0.5) .attr('y', 0.5) .attr('width', options.node_x_size) .attr('height', options.node_y_size) .attr('stroke', 'lightgrey') .attr('stroke-width', 1) .attr('fill', 'white') .attr('y', -options.node_y_size / 2); // Brackets on the right of condition nodes without children. non_leaf_node_without_children = nodes.filter(node =\> node.data.condition != null \&\& node.children == null) .append('g') .attr('transform', `translate(${options.node_x_size},0)`); non_leaf_node_without_children.append('path') .attr('d', 'M0,0 C 10,0 0,10 10,10') .attr('fill', 'none') .attr('stroke-width', 1.0) .attr('stroke', '#F00'); non_leaf_node_without_children.append('path') .attr('d', 'M0,0 C 10,0 0,-10 10,-10') .attr('fill', 'none') .attr('stroke-width', 1.0) .attr('stroke', '#0F0'); const node_content = nodes.append('g').attr( 'transform', `translate(0,${options.node_padding - options.node_y_size / 2})`); node_content.append(node =\> create_node_element(options, node)); } /\*\* * Creates the D3 content for a single node. * @param {!options} options Dictionary of configurations. * @param {!node} node Node to draw. * @return {!d3} D3 content. \*/ function create_node_element(options, node) { // Output accumulator. let output = { // Content to draw. content: d3.create('svg:g'), // Vertical offset to the next element to draw. vertical_offset: 0 }; // Conditions. if (node.data.condition != null) { display_condition(options, node.data.condition, output); } // Values. if (node.data.value != null) { display_value(options, node.data.value, output); } // Explanations. if (node.data.explanation != null) { display_explanation(options, node.data.explanation, output); } return output.content.node(); } /\*\* * Adds a single line of text inside of a node. * @param {!options} options Dictionary of configurations. * @param {string} text Text to display. * @param {!output} output Output display accumulator. \*/ function display_node_text(options, text, output) { output.content.append('text') .attr('x', options.node_padding) .attr('y', output.vertical_offset) .attr('alignment-baseline', 'hanging') .text(text); output.vertical_offset += 10; } /\*\* * Adds a single line of text inside of a node with a tooltip. * @param {!options} options Dictionary of configurations. * @param {string} text Text to display. * @param {string} tooltip Text in the Tooltip. * @param {!output} output Output display accumulator. \*/ function display_node_text_with_tooltip(options, text, tooltip, output) { const item = output.content.append('text') .attr('x', options.node_padding) .attr('alignment-baseline', 'hanging') .text(text); add_tooltip(options, item, () =\> tooltip); output.vertical_offset += 10; } /\*\* * Adds a tooltip to a dom element. * @param {!options} options Dictionary of configurations. * @param {!dom} target Dom element to equip with a tooltip. * @param {!func} get_content Generates the html content of the tooltip. \*/ function add_tooltip(options, target, get_content) { function show(d) { options.tooltip.style('display', 'block'); options.tooltip.html(get_content()); } function hide(d) { options.tooltip.style('display', 'none'); } function move(d) { options.tooltip.style('display', 'block'); options.tooltip.style('left', (d.pageX + 5) + 'px'); options.tooltip.style('top', d.pageY + 'px'); } target.on('mouseover', show); target.on('mouseout', hide); target.on('mousemove', move); } /\*\* * Adds a condition inside of a node. * @param {!options} options Dictionary of configurations. * @param {!condition} condition Condition to display. * @param {!output} output Output display accumulator. \*/ function display_condition(options, condition, output) { threshold_format = d3.format('r'); if (condition.type === 'IS_MISSING') { display_node_text(options, `${condition.attribute} is missing`, output); return; } if (condition.type === 'IS_TRUE') { display_node_text(options, `${condition.attribute} is true`, output); return; } if (condition.type === 'NUMERICAL_IS_HIGHER_THAN') { format = d3.format('r'); display_node_text( options, `${condition.attribute} >= ${threshold_format(condition.threshold)}`, output); return; } if (condition.type === 'CATEGORICAL_IS_IN') { display_node_text_with_tooltip( options, `${condition.attribute} in [...]`, `${condition.attribute} in [${condition.mask}]`, output); return; } if (condition.type === 'CATEGORICAL_SET_CONTAINS') { display_node_text_with_tooltip( options, `${condition.attribute} intersect [...]`, `${condition.attribute} intersect [${condition.mask}]`, output); return; } if (condition.type === 'NUMERICAL_SPARSE_OBLIQUE') { display_node_text_with_tooltip( options, `Sparse oblique split...`, `[${condition.attributes}]*[${condition.weights}]>=${ threshold_format(condition.threshold)}`, output); return; } display_node_text( options, `Non supported condition ${condition.type}`, output); } /\*\* * Adds a value inside of a node. * @param {!options} options Dictionary of configurations. * @param {!value} value Value to display. * @param {!output} output Output display accumulator. \*/ function display_value(options, value, output) { if (value.type === 'PROBABILITY') { const left_margin = 0; const right_margin = 50; const plot_width = options.node_x_size - options.node_padding \* 2 - left_margin - right_margin; let cusum = Array.from(d3.cumsum(value.distribution)); cusum.unshift(0); const distribution_plot = output.content.append('g').attr( 'transform', `translate(0,${output.vertical_offset + 0.5})`); distribution_plot.selectAll('rect') .data(value.distribution) .join('rect') .attr('height', 10) .attr( 'x', (d, i) =\> (cusum\[i\] \* plot_width + left_margin + options.node_padding)) .attr('width', (d, i) =\> d \* plot_width) .style('fill', (d, i) =\> d3.schemeSet1\[i\]); const num_examples = output.content.append('g') .attr('transform', `translate(0,${output.vertical_offset})`) .append('text') .attr('x', options.node_x_size - options.node_padding) .attr('alignment-baseline', 'hanging') .attr('text-anchor', 'end') .text(`(${value.num_examples})`); const distribution_details = d3.create('ul'); distribution_details.selectAll('li') .data(value.distribution) .join('li') .append('span') .text( (d, i) =\> 'class ' + i + ': ' + d3.format('.3%')(value.distribution\[i\])); add_tooltip(options, distribution_plot, () =\> distribution_details.html()); add_tooltip(options, num_examples, () =\> 'Number of examples'); output.vertical_offset += 10; return; } if (value.type === 'REGRESSION') { display_node_text( options, 'value: ' + d3.format('r')(value.value) + ` (` + d3.format('.6')(value.num_examples) + `)`, output); return; } display_node_text(options, `Non supported value ${value.type}`, output); } /\*\* * Adds an explanation inside of a node. * @param {!options} options Dictionary of configurations. * @param {!explanation} explanation Explanation to display. * @param {!output} output Output display accumulator. \*/ function display_explanation(options, explanation, output) { // Margin before the explanation. output.vertical_offset += 10; display_node_text( options, `Non supported explanation ${explanation.type}`, output); } /\*\* * Draw the edges of the tree. * @param {!options} options Dictionary of configurations. * @param {!graph} graph D3 search handle containing the graph. * @param {!tree_struct} tree_struct Structure of the tree (node placement, * data, etc.). \*/ function display_edges(options, graph, tree_struct) { // Draw an edge between a parent and a child node with a bezier. function draw_single_edge(d) { return 'M' + (d.source.y + options.node_x_size) + ',' + d.source.x + ' C' + (d.source.y + options.node_x_size + options.edge_rounding) + ',' + d.source.x + ' ' + (d.target.y - options.edge_rounding) + ',' + d.target.x + ' ' + d.target.y + ',' + d.target.x; } graph.append('g') .attr('fill', 'none') .attr('stroke-width', 1.2) .selectAll('path') .data(tree_struct.links()) .join('path') .attr('d', draw_single_edge) .attr( 'stroke', d =\> (d.target === d.source.children\[0\]) ? '#0F0' : '#F00'); } display_tree({"margin": 10, "node_x_size": 160, "node_y_size": 28, "node_x_offset": 180, "node_y_offset": 33, "font_size": 10, "edge_rounding": 20, "node_padding": 2, "show_plot_bounding_box": false}, {"value": {"type": "PROBABILITY", "distribution": \[0.47093023255813954, 0.19476744186046513, 0.33430232558139533\], "num_examples": 344.0}, "condition": {"type": "NUMERICAL_IS_HIGHER_THAN", "attribute": "bill_length_mm", "threshold": 43.25}, "children": \[{"value": {"type": "PROBABILITY", "distribution": \[0.005847953216374269, 0.3567251461988304, 0.6374269005847953\], "num_examples": 171.0}, "condition": {"type": "CATEGORICAL_IS_IN", "attribute": "island", "mask": \["Biscoe"\]}, "children": \[{"value": {"type": "PROBABILITY", "distribution": \[0.00909090909090909, 0.0, 0.990909090909091\], "num_examples": 110.0}, "condition": {"type": "NUMERICAL_IS_HIGHER_THAN", "attribute": "bill_depth_mm", "threshold": 17.225584030151367}, "children": \[{"value": {"type": "PROBABILITY", "distribution": \[0.16666666666666666, 0.0, 0.8333333333333334\], "num_examples": 6.0}}, {"value": {"type": "PROBABILITY", "distribution": \[0.0, 0.0, 1.0\], "num_examples": 104.0}}\]}, {"value": {"type": "PROBABILITY", "distribution": \[0.0, 1.0, 0.0\], "num_examples": 61.0}}\]}, {"value": {"type": "PROBABILITY", "distribution": \[0.930635838150289, 0.03468208092485549, 0.03468208092485549\], "num_examples": 173.0}, "condition": {"type": "NUMERICAL_IS_HIGHER_THAN", "attribute": "bill_depth_mm", "threshold": 15.100000381469727}, "children": \[{"value": {"type": "PROBABILITY", "distribution": \[0.9640718562874252, 0.03592814371257485, 0.0\], "num_examples": 167.0}, "condition": {"type": "NUMERICAL_IS_HIGHER_THAN", "attribute": "flipper_length_mm", "threshold": 187.5}, "children": \[{"value": {"type": "PROBABILITY", "distribution": \[1.0, 0.0, 0.0\], "num_examples": 104.0}}, {"value": {"type": "PROBABILITY", "distribution": \[0.9047619047619048, 0.09523809523809523, 0.0\], "num_examples": 63.0}, "condition": {"type": "NUMERICAL_IS_HIGHER_THAN", "attribute": "bill_length_mm", "threshold": 42.30000305175781}}\]}, {"value": {"type": "PROBABILITY", "distribution": \[0.0, 0.0, 1.0\], "num_examples": 6.0}}\]}\]}, "#tree_plot_05707b35c4f748738efd3da21ab9197f") ### 检查模型结构 模型结构和元数据可以通过`make_inspector()`创建的**inspector**来获取。 \*\*注意:\*\*根据学习算法和超参数的不同,inspector将暴露不同的专门属性。例如,`winner_take_all`字段是随机森林模型特有的。 ```python # 创建一个模型检查器对象,用于检查模型的性能和质量 inspector = model.make_inspector() ``` 对于我们的模型,可用的检查员字段有: ```python # 使用列表推导式,遍历inspector模块中的所有属性 # 过滤掉以"_"开头的属性 fields = [field for field in dir(inspector) if not field.startswith("_")] ``` ['MODEL_NAME', 'dataspec', 'evaluation', 'export_to_tensorboard', 'extract_all_trees', 'extract_tree', 'features', 'header', 'iterate_on_nodes', 'label', 'label_classes', 'metadata', 'model_type', 'num_trees', 'objective', 'specialized_header', 'task', 'training_logs', 'tuning_logs', 'variable_importances', 'winner_take_all_inference'] 记得查看[API参考](https://tensorflow.org/decision_forests/api_docs/python/tfdf/inspector/AbstractInspector)或使用`?`查看内置文档。 ```python ?inspector.model_type ``` 一些模型元数据: ```python # 打印模型类型 print("Model type:", inspector.model_type()) # 打印模型中树的数量 print("Number of trees:", inspector.num_trees()) # 打印模型的目标函数 print("Objective:", inspector.objective()) # 打印模型的输入特征 print("Input features:", inspector.features()) ``` Model type: RANDOM_FOREST Number of trees: 300 Objective: Classification(label=__LABEL, class=None, num_classes=3) Input features: ["bill_depth_mm" (1; #0), "bill_length_mm" (1; #1), "body_mass_g" (1; #2), "flipper_length_mm" (1; #3), "island" (4; #4), "sex" (4; #5), "year" (1; #6)] `evaluate()`是在训练期间计算的模型评估。用于此评估的数据集取决于算法。例如,它可以是验证数据集或袋外数据集。 \*\*注意:\*\*虽然在训练期间计算,但`evaluate()`从未对训练数据集进行评估。 ```python # 创建一个名为inspector的对象 inspector = Inspector() # 调用inspector对象的evaluation()方法 inspector.evaluation() ``` Evaluation(num_examples=344, accuracy=0.9767441860465116, loss=0.06782230959804512, rmse=None, ndcg=None, aucs=None, auuc=None, qini=None) 变量重要性如下: The variable importances are: ```python # 打印可用的变量重要性 print(f"Available variable importances:") # 遍历变量重要性字典的键,并打印出来 for importance in inspector.variable_importances().keys(): print("\t", importance) ``` Available variable importances: MEAN_DECREASE_IN_AP_1_VS_OTHERS MEAN_DECREASE_IN_PRAUC_3_VS_OTHERS SUM_SCORE MEAN_DECREASE_IN_PRAUC_1_VS_OTHERS MEAN_DECREASE_IN_ACCURACY MEAN_DECREASE_IN_AUC_1_VS_OTHERS MEAN_DECREASE_IN_AP_3_VS_OTHERS NUM_AS_ROOT MEAN_DECREASE_IN_AP_2_VS_OTHERS MEAN_DECREASE_IN_AUC_2_VS_OTHERS MEAN_MIN_DEPTH MEAN_DECREASE_IN_AUC_3_VS_OTHERS NUM_NODES MEAN_DECREASE_IN_PRAUC_2_VS_OTHERS 不同的变量重要性具有不同的语义。例如,具有**平均减少auc** 为`0.05`的特征意味着从训练数据集中移除该特征会使AUC降低/受损5%。 ```python # 获取类别1与其他类别之间的AUC的平均减少量 mean_decrease_in_auc_1_vs_others = inspector.variable_importances()["MEAN_DECREASE_IN_AUC_1_VS_OTHERS"] ``` [("bill_length_mm" (1; #1), 0.0713061951754389), ("island" (4; #4), 0.007298519736842035), ("flipper_length_mm" (1; #3), 0.004505893640351366), ("bill_depth_mm" (1; #0), 0.0021244517543865804), ("body_mass_g" (1; #2), 0.0005482456140351033), ("sex" (4; #5), 0.00047971491228060437), ("year" (1; #6), 0.0)] 绘制使用Matplotlib的检查器中的变量重要性 ```python import matplotlib.pyplot as plt plt.figure(figsize=(12, 4)) # 创建一个大小为12x4的图形 # 平均AUC下降值(class 1相对于其他类别) variable_importance_metric = "MEAN_DECREASE_IN_AUC_1_VS_OTHERS" variable_importances = inspector.variable_importances()[variable_importance_metric] # 提取特征名称和重要性值 # # `variable_importances` 是一个包含<特征, 重要性>元组的列表 feature_names = [vi[0].name for vi in variable_importances] # 提取特征名称 feature_importances = [vi[1] for vi in variable_importances] # 提取重要性值 # 特征按重要性值降序排列 feature_ranks = range(len(feature_names)) bar = plt.barh(feature_ranks, feature_importances, label=[str(x) for x in feature_ranks]) # 创建水平条形图 plt.yticks(feature_ranks, feature_names) # 设置y轴刻度为特征名称 plt.gca().invert_yaxis() # 反转y轴刻度顺序,使重要性高的特征在上方 # TODO: 当可用时,替换为 "plt.bar_label()" # 使用值标记每个条形图 for importance, patch in zip(feature_importances, bar.patches): plt.text(patch.get_x() + patch.get_width(), patch.get_y(), f"{importance:.4f}", va="top") plt.xlabel(variable_importance_metric) # 设置x轴标签为重要性度量 plt.title("Mean decrease in AUC of the class 1 vs the others") # 设置图形标题 plt.tight_layout() # 调整图形布局,以防止标签重叠 plt.show() # 显示图形 ``` ![](https://file.jishuzhan.net/article/1739646265521606657/eb7c895ff6a36380ed338b5624f72eb7.webp) 最后,访问实际的树结构: ```python # 从inspector对象中提取树的信息 # 参数tree_idx表示要提取的树的索引,这里为0表示提取第一棵树的信息 inspector.extract_tree(tree_idx=0) ``` Tree(root=NonLeafNode(condition=(bill_length_mm >= 43.25; miss=True, score=0.5482327342033386), pos_child=NonLeafNode(condition=(island in ['Biscoe']; miss=True, score=0.6515106558799744), pos_child=NonLeafNode(condition=(bill_depth_mm >= 17.225584030151367; miss=False, score=0.027205035090446472), pos_child=LeafNode(value=ProbabilityValue([0.16666666666666666, 0.0, 0.8333333333333334],n=6.0), idx=7), neg_child=LeafNode(value=ProbabilityValue([0.0, 0.0, 1.0],n=104.0), idx=6), value=ProbabilityValue([0.00909090909090909, 0.0, 0.990909090909091],n=110.0)), neg_child=LeafNode(value=ProbabilityValue([0.0, 1.0, 0.0],n=61.0), idx=5), value=ProbabilityValue([0.005847953216374269, 0.3567251461988304, 0.6374269005847953],n=171.0)), neg_child=NonLeafNode(condition=(bill_depth_mm >= 15.100000381469727; miss=True, score=0.150658518075943), pos_child=NonLeafNode(condition=(flipper_length_mm >= 187.5; miss=True, score=0.036139510571956635), pos_child=LeafNode(value=ProbabilityValue([1.0, 0.0, 0.0],n=104.0), idx=4), neg_child=NonLeafNode(condition=(bill_length_mm >= 42.30000305175781; miss=True, score=0.23430533707141876), pos_child=LeafNode(value=ProbabilityValue([0.0, 1.0, 0.0],n=5.0), idx=3), neg_child=NonLeafNode(condition=(bill_length_mm >= 40.55000305175781; miss=True, score=0.043961383402347565), pos_child=LeafNode(value=ProbabilityValue([0.8, 0.2, 0.0],n=5.0), idx=2), neg_child=LeafNode(value=ProbabilityValue([1.0, 0.0, 0.0],n=53.0), idx=1), value=ProbabilityValue([0.9827586206896551, 0.017241379310344827, 0.0],n=58.0)), value=ProbabilityValue([0.9047619047619048, 0.09523809523809523, 0.0],n=63.0)), value=ProbabilityValue([0.9640718562874252, 0.03592814371257485, 0.0],n=167.0)), neg_child=LeafNode(value=ProbabilityValue([0.0, 0.0, 1.0],n=6.0), idx=0), value=ProbabilityValue([0.930635838150289, 0.03468208092485549, 0.03468208092485549],n=173.0)), value=ProbabilityValue([0.47093023255813954, 0.19476744186046513, 0.33430232558139533],n=344.0)), label_classes=None) 提取树并不高效。如果速度很重要,可以使用`iterate_on_nodes()`方法来进行模型检查。这个方法是对模型的所有节点进行深度优先的前序遍历迭代器。 **注意:** `extract_tree()`是使用`iterate_on_nodes()`实现的。 以下示例计算每个特征被使用的次数(这是一种结构变量重要性的指标): ```python # 创建一个默认字典number_of_use,用于记录每个特征在其条件中被使用的次数 number_of_use = collections.defaultdict(lambda: 0) # 对所有节点进行深度优先的前序遍历 for node_iter in inspector.iterate_on_nodes(): # 如果节点不是叶节点,则跳过 if not isinstance(node_iter.node, tfdf.py_tree.node.NonLeafNode): continue # 遍历节点条件中使用的所有特征 # 默认情况下,模型是"oblique"的,即每个节点测试一个特征 for feature in node_iter.node.condition.features(): # 特征在使用次数上加1 number_of_use[feature] += 1 # 打印每个特征的条件节点数 print("Number of condition nodes per features:") for feature, count in number_of_use.items(): print("\t", feature.name, ":", count) ``` Number of condition nodes per features: bill_length_mm : 778 bill_depth_mm : 463 flipper_length_mm : 414 island : 342 body_mass_g : 338 year : 19 sex : 36 ### 手动创建模型 在本节中,您将手动创建一个小的随机森林模型。为了使其更加简单,该模型只包含一个简单的树: 3个标签类别:红色、蓝色和绿色。 2个特征:f1(数值型)和f2(字符串分类型) f1>=1.5 ├─(正)─ f2在["猫","狗"]中 │ ├─(正)─ 值:[0.8, 0.1, 0.1] │ └─(负)─ 值:[0.1, 0.8, 0.1] └─(负)─ 值:[0.1, 0.1, 0.8] ```python # 创建模型构建器 builder = tfdf.builder.RandomForestBuilder( path="/tmp/manual_model", # 指定模型保存的路径 objective=tfdf.py_tree.objective.ClassificationObjective( label="color", # 指定目标变量为"color" classes=["red", "blue", "green"])) # 指定目标变量的类别为["red", "blue", "green"] ``` 每棵树都逐个添加。 **注意:** 树对象(`tfdf.py_tree.tree.Tree`)与前一节中`extract_tree()`返回的树对象相同。 ```python # 导入所需的模块和类 Tree = tfdf.py_tree.tree.Tree # 树结构 SimpleColumnSpec = tfdf.py_tree.dataspec.SimpleColumnSpec # 列规范 ColumnType = tfdf.py_tree.dataspec.ColumnType # 列类型 NonLeafNode = tfdf.py_tree.node.NonLeafNode # 非叶节点 LeafNode = tfdf.py_tree.node.LeafNode # 叶节点 NumericalHigherThanCondition = tfdf.py_tree.condition.NumericalHigherThanCondition # 数值大于条件 CategoricalIsInCondition = tfdf.py_tree.condition.CategoricalIsInCondition # 类别在条件 ProbabilityValue = tfdf.py_tree.value.ProbabilityValue # 概率值 # 创建树结构并添加到builder中 builder.add_tree( Tree( NonLeafNode( condition=NumericalHigherThanCondition( feature=SimpleColumnSpec(name="f1", type=ColumnType.NUMERICAL), # 数值特征"f1" threshold=1.5, # 阈值为1.5 missing_evaluation=False), # 不考虑缺失值 pos_child=NonLeafNode( condition=CategoricalIsInCondition( feature=SimpleColumnSpec(name="f2",type=ColumnType.CATEGORICAL), # 类别特征"f2" mask=["cat", "dog"], # 类别为"cat"或"dog" missing_evaluation=False), # 不考虑缺失值 pos_child=LeafNode(value=ProbabilityValue(probability=[0.8, 0.1, 0.1], num_examples=10)), # 正向子节点为叶节点,概率值为[0.8, 0.1, 0.1],样本数为10 neg_child=LeafNode(value=ProbabilityValue(probability=[0.1, 0.8, 0.1], num_examples=20))), # 负向子节点为叶节点,概率值为[0.1, 0.8, 0.1],样本数为20 neg_child=LeafNode(value=ProbabilityValue(probability=[0.1, 0.1, 0.8], num_examples=30))))) # 负向子节点为叶节点,概率值为[0.1, 0.1, 0.8],样本数为30 ``` ### 结束树写作 ```python # 关闭builder对象 builder.close() ``` [INFO 2022-12-14T12:25:00.790486355+00:00 kernel.cc:1175] Loading model from path /tmp/manual_model/tmp/ with prefix e09a067144bc479b [INFO 2022-12-14T12:25:00.790802259+00:00 decision_forest.cc:640] Model loaded with 1 root(s), 5 node(s), and 2 input feature(s). [INFO 2022-12-14T12:25:00.790878962+00:00 kernel.cc:1021] Use fast generic engine WARNING:absl:Found untraced functions such as call_get_leaves, _update_step_xla while saving (showing 2 of 2). These functions will not be directly callable after loading. INFO:tensorflow:Assets written to: /tmp/manual_model/assets INFO:tensorflow:Assets written to: /tmp/manual_model/assets 现在您可以将该模型作为常规的keras模型打开,并进行预测: ```python # 加载预训练模型 manual_model = tf.keras.models.load_model("/tmp/manual_model") ``` [INFO 2022-12-14T12:25:01.436506097+00:00 kernel.cc:1175] Loading model from path /tmp/manual_model/assets/ with prefix e09a067144bc479b [INFO 2022-12-14T12:25:01.436871761+00:00 decision_forest.cc:640] Model loaded with 1 root(s), 5 node(s), and 2 input feature(s). [INFO 2022-12-14T12:25:01.436909696+00:00 kernel.cc:1021] Use fast generic engine ```python # 创建一个tf.data.Dataset对象,从给定的张量中切片得到数据集 # 数据集包含两个特征"f1"和"f2",分别是浮点数和字符串类型 # 数据集中的每个样本是一个字典,包含"f1"和"f2"两个键 # 样本数据为: # "f1": [1.0, 2.0, 3.0] # "f2": ["cat", "cat", "bird"] # 使用batch(2)方法将数据集划分为大小为2的批次 examples = tf.data.Dataset.from_tensor_slices({ "f1": [1.0, 2.0, 3.0], "f2": ["cat", "cat", "bird"] }).batch(2) # 使用manual_model对examples进行预测 predictions = manual_model.predict(examples) # 打印预测结果 print("predictions:\n", predictions) ``` 1/2 [==============>...............] - ETA: 0s 2/2 [==============================] - 0s 2ms/step predictions: [[0.1 0.1 0.8] [0.8 0.1 0.1] [0.1 0.8 0.1]] 访问结构: **注意:** 由于模型是序列化和反序列化的,您需要使用一种替代但等效的形式。 ```python # 代码注释 # 获取yggdrasil模型路径 yggdrasil_model_path = manual_model.yggdrasil_model_path_tensor().numpy().decode("utf-8") print("yggdrasil_model_path:",yggdrasil_model_path) # 创建一个模型检查器,用于检查模型的输入特征 inspector = tfdf.inspector.make_inspector(yggdrasil_model_path) print("Input features:", inspector.features()) ``` yggdrasil_model_path: /tmp/manual_model/assets/ Input features: ["f1" (1; #1), "f2" (4; #2)] 当然,您可以手动绘制这个构建的模型: ```python # 导入tfdf库中的plot_model_in_colab函数 import tensorflow_decision_forests as tfdf # 使用plot_model_in_colab函数绘制manual_model模型的结构图 tfdf.model_plotter.plot_model_in_colab(manual_model) ``` /\*\* * Plotting of decision trees generated by TF-DF. * * A tree is a recursive structure of node objects. * A node contains one or more of the following components: * * * A value: Representing the output of the node. If the node is not a leaf, * the value is only present for analysis i.e. it is not used for * predictions. * * * A condition : For non-leaf nodes, the condition (also known as split) * defines a binary test to branch to the positive or negative child. * * * An explanation: Generally a plot showing the relation between the label * and the condition to give insights about the effect of the condition. * * * Two children : For non-leaf nodes, the children nodes. The first * children (i.e. "node.children[0]") is the negative children (drawn in * red). The second children is the positive one (drawn in green). * \*/ /\*\* * Plots a single decision tree into a DOM element. * @param {!options} options Dictionary of configurations. * @param {!tree} raw_tree Recursive tree structure. * @param {string} canvas_id Id of the output dom element. \*/ function display_tree(options, raw_tree, canvas_id) { console.log(options); // Determine the node placement. const tree_struct = d3.tree().nodeSize( \[options.node_y_offset, options.node_x_offset\])(d3.hierarchy(raw_tree)); // Boundaries of the node placement. let x_min = Infinity; let x_max = -x_min; let y_min = Infinity; let y_max = -x_min; tree_struct.each(d =\> { if (d.x \> x_max) x_max = d.x; if (d.x \< x_min) x_min = d.x; if (d.y \> y_max) y_max = d.y; if (d.y \< y_min) y_min = d.y; }); // Size of the plot. const width = y_max - y_min + options.node_x_size + options.margin \* 2; const height = x_max - x_min + options.node_y_size + options.margin \* 2 + options.node_y_offset - options.node_y_size; const plot = d3.select(canvas_id); // Tool tip options.tooltip = plot.append('div') .attr('width', 100) .attr('height', 100) .style('padding', '4px') .style('background', '#fff') .style('box-shadow', '4px 4px 0px rgba(0,0,0,0.1)') .style('border', '1px solid black') .style('font-family', 'sans-serif') .style('font-size', options.font_size) .style('position', 'absolute') .style('z-index', '10') .attr('pointer-events', 'none') .style('display', 'none'); // Create canvas const svg = plot.append('svg').attr('width', width).attr('height', height); const graph = svg.style('overflow', 'visible') .append('g') .attr('font-family', 'sans-serif') .attr('font-size', options.font_size) .attr( 'transform', () =\> `translate(${options.margin},${ - x_min + options.node_y_offset / 2 + options.margin})`); // Plot bounding box. if (options.show_plot_bounding_box) { svg.append('rect') .attr('width', width) .attr('height', height) .attr('fill', 'none') .attr('stroke-width', 1.0) .attr('stroke', 'black'); } // Draw the edges. display_edges(options, graph, tree_struct); // Draw the nodes. display_nodes(options, graph, tree_struct); } /\*\* * Draw the nodes of the tree. * @param {!options} options Dictionary of configurations. * @param {!graph} graph D3 search handle containing the graph. * @param {!tree_struct} tree_struct Structure of the tree (node placement, * data, etc.). \*/ function display_nodes(options, graph, tree_struct) { const nodes = graph.append('g') .selectAll('g') .data(tree_struct.descendants()) .join('g') .attr('transform', d =\> `translate(${d.y},${d.x})`); nodes.append('rect') .attr('x', 0.5) .attr('y', 0.5) .attr('width', options.node_x_size) .attr('height', options.node_y_size) .attr('stroke', 'lightgrey') .attr('stroke-width', 1) .attr('fill', 'white') .attr('y', -options.node_y_size / 2); // Brackets on the right of condition nodes without children. non_leaf_node_without_children = nodes.filter(node =\> node.data.condition != null \&\& node.children == null) .append('g') .attr('transform', `translate(${options.node_x_size},0)`); non_leaf_node_without_children.append('path') .attr('d', 'M0,0 C 10,0 0,10 10,10') .attr('fill', 'none') .attr('stroke-width', 1.0) .attr('stroke', '#F00'); non_leaf_node_without_children.append('path') .attr('d', 'M0,0 C 10,0 0,-10 10,-10') .attr('fill', 'none') .attr('stroke-width', 1.0) .attr('stroke', '#0F0'); const node_content = nodes.append('g').attr( 'transform', `translate(0,${options.node_padding - options.node_y_size / 2})`); node_content.append(node =\> create_node_element(options, node)); } /\*\* * Creates the D3 content for a single node. * @param {!options} options Dictionary of configurations. * @param {!node} node Node to draw. * @return {!d3} D3 content. \*/ function create_node_element(options, node) { // Output accumulator. let output = { // Content to draw. content: d3.create('svg:g'), // Vertical offset to the next element to draw. vertical_offset: 0 }; // Conditions. if (node.data.condition != null) { display_condition(options, node.data.condition, output); } // Values. if (node.data.value != null) { display_value(options, node.data.value, output); } // Explanations. if (node.data.explanation != null) { display_explanation(options, node.data.explanation, output); } return output.content.node(); } /\*\* * Adds a single line of text inside of a node. * @param {!options} options Dictionary of configurations. * @param {string} text Text to display. * @param {!output} output Output display accumulator. \*/ function display_node_text(options, text, output) { output.content.append('text') .attr('x', options.node_padding) .attr('y', output.vertical_offset) .attr('alignment-baseline', 'hanging') .text(text); output.vertical_offset += 10; } /\*\* * Adds a single line of text inside of a node with a tooltip. * @param {!options} options Dictionary of configurations. * @param {string} text Text to display. * @param {string} tooltip Text in the Tooltip. * @param {!output} output Output display accumulator. \*/ function display_node_text_with_tooltip(options, text, tooltip, output) { const item = output.content.append('text') .attr('x', options.node_padding) .attr('alignment-baseline', 'hanging') .text(text); add_tooltip(options, item, () =\> tooltip); output.vertical_offset += 10; } /\*\* * Adds a tooltip to a dom element. * @param {!options} options Dictionary of configurations. * @param {!dom} target Dom element to equip with a tooltip. * @param {!func} get_content Generates the html content of the tooltip. \*/ function add_tooltip(options, target, get_content) { function show(d) { options.tooltip.style('display', 'block'); options.tooltip.html(get_content()); } function hide(d) { options.tooltip.style('display', 'none'); } function move(d) { options.tooltip.style('display', 'block'); options.tooltip.style('left', (d.pageX + 5) + 'px'); options.tooltip.style('top', d.pageY + 'px'); } target.on('mouseover', show); target.on('mouseout', hide); target.on('mousemove', move); } /\*\* * Adds a condition inside of a node. * @param {!options} options Dictionary of configurations. * @param {!condition} condition Condition to display. * @param {!output} output Output display accumulator. \*/ function display_condition(options, condition, output) { threshold_format = d3.format('r'); if (condition.type === 'IS_MISSING') { display_node_text(options, `${condition.attribute} is missing`, output); return; } if (condition.type === 'IS_TRUE') { display_node_text(options, `${condition.attribute} is true`, output); return; } if (condition.type === 'NUMERICAL_IS_HIGHER_THAN') { format = d3.format('r'); display_node_text( options, `${condition.attribute} >= ${threshold_format(condition.threshold)}`, output); return; } if (condition.type === 'CATEGORICAL_IS_IN') { display_node_text_with_tooltip( options, `${condition.attribute} in [...]`, `${condition.attribute} in [${condition.mask}]`, output); return; } if (condition.type === 'CATEGORICAL_SET_CONTAINS') { display_node_text_with_tooltip( options, `${condition.attribute} intersect [...]`, `${condition.attribute} intersect [${condition.mask}]`, output); return; } if (condition.type === 'NUMERICAL_SPARSE_OBLIQUE') { display_node_text_with_tooltip( options, `Sparse oblique split...`, `[${condition.attributes}]*[${condition.weights}]>=${ threshold_format(condition.threshold)}`, output); return; } display_node_text( options, `Non supported condition ${condition.type}`, output); } /\*\* * Adds a value inside of a node. * @param {!options} options Dictionary of configurations. * @param {!value} value Value to display. * @param {!output} output Output display accumulator. \*/ function display_value(options, value, output) { if (value.type === 'PROBABILITY') { const left_margin = 0; const right_margin = 50; const plot_width = options.node_x_size - options.node_padding \* 2 - left_margin - right_margin; let cusum = Array.from(d3.cumsum(value.distribution)); cusum.unshift(0); const distribution_plot = output.content.append('g').attr( 'transform', `translate(0,${output.vertical_offset + 0.5})`); distribution_plot.selectAll('rect') .data(value.distribution) .join('rect') .attr('height', 10) .attr( 'x', (d, i) =\> (cusum\[i\] \* plot_width + left_margin + options.node_padding)) .attr('width', (d, i) =\> d \* plot_width) .style('fill', (d, i) =\> d3.schemeSet1\[i\]); const num_examples = output.content.append('g') .attr('transform', `translate(0,${output.vertical_offset})`) .append('text') .attr('x', options.node_x_size - options.node_padding) .attr('alignment-baseline', 'hanging') .attr('text-anchor', 'end') .text(`(${value.num_examples})`); const distribution_details = d3.create('ul'); distribution_details.selectAll('li') .data(value.distribution) .join('li') .append('span') .text( (d, i) =\> 'class ' + i + ': ' + d3.format('.3%')(value.distribution\[i\])); add_tooltip(options, distribution_plot, () =\> distribution_details.html()); add_tooltip(options, num_examples, () =\> 'Number of examples'); output.vertical_offset += 10; return; } if (value.type === 'REGRESSION') { display_node_text( options, 'value: ' + d3.format('r')(value.value) + ` (` + d3.format('.6')(value.num_examples) + `)`, output); return; } display_node_text(options, `Non supported value ${value.type}`, output); } /\*\* * Adds an explanation inside of a node. * @param {!options} options Dictionary of configurations. * @param {!explanation} explanation Explanation to display. * @param {!output} output Output display accumulator. \*/ function display_explanation(options, explanation, output) { // Margin before the explanation. output.vertical_offset += 10; display_node_text( options, `Non supported explanation ${explanation.type}`, output); } /\*\* * Draw the edges of the tree. * @param {!options} options Dictionary of configurations. * @param {!graph} graph D3 search handle containing the graph. * @param {!tree_struct} tree_struct Structure of the tree (node placement, * data, etc.). \*/ function display_edges(options, graph, tree_struct) { // Draw an edge between a parent and a child node with a bezier. function draw_single_edge(d) { return 'M' + (d.source.y + options.node_x_size) + ',' + d.source.x + ' C' + (d.source.y + options.node_x_size + options.edge_rounding) + ',' + d.source.x + ' ' + (d.target.y - options.edge_rounding) + ',' + d.target.x + ' ' + d.target.y + ',' + d.target.x; } graph.append('g') .attr('fill', 'none') .attr('stroke-width', 1.2) .selectAll('path') .data(tree_struct.links()) .join('path') .attr('d', draw_single_edge) .attr( 'stroke', d =\> (d.target === d.source.children\[0\]) ? '#0F0' : '#F00'); } display_tree({"margin": 10, "node_x_size": 160, "node_y_size": 28, "node_x_offset": 180, "node_y_offset": 33, "font_size": 10, "edge_rounding": 20, "node_padding": 2, "show_plot_bounding_box": false, "labels": "\["red", "blue", "green"\]"}, {"condition": {"type": "NUMERICAL_IS_HIGHER_THAN", "attribute": "f1", "threshold": 1.5}, "children": \[{"condition": {"type": "CATEGORICAL_IS_IN", "attribute": "f2", "mask": \["cat", "dog"\]}, "children": \[{"value": {"type": "PROBABILITY", "distribution": \[0.8, 0.1, 0.1\], "num_examples": 10.0}}, {"value": {"type": "PROBABILITY", "distribution": \[0.1, 0.8, 0.1\], "num_examples": 20.0}}\]}, {"value": {"type": "PROBABILITY", "distribution": \[0.1, 0.1, 0.8\], "num_examples": 30.0}}\]}, "#tree_plot_34c8fb6cf7ca49eda845b971be7f0560")

相关推荐
arbboter1 分钟前
【AI插件开发】Notepad++ AI插件开发实践:从Dock窗口集成到功能菜单实现
人工智能·notepad++·动态菜单·notepad++插件开发·dock窗口集成·ai代码辅助工具·ai对话窗口
jndingxin10 分钟前
OpenCV 图形API(或称G-API)(1)
人工智能·opencv·计算机视觉
神马行空1 小时前
一文解读DeepSeek大模型在政府工作中具体的场景应用
人工智能·大模型·数字化转型·deepseek·政务应用
合合技术团队1 小时前
实测对比|法国 AI 独角兽公司发布的“最强 OCR”,实测效果如何?
大数据·人工智能·图像识别
蒹葭苍苍8731 小时前
LoRA、QLoRA微调与Lama Factory
人工智能·笔记
蹦蹦跳跳真可爱5891 小时前
Python----机器学习(基于PyTorch的线性回归)
人工智能·pytorch·python·机器学习·线性回归
mosquito_lover12 小时前
矿山边坡监测预警系统设计
人工智能·python·深度学习·神经网络·视觉检测
契合qht53_shine2 小时前
OpenCV 从入门到精通(day_03)
人工智能·opencv·计算机视觉
Naomi5213 小时前
Trustworthy Machine Learning
人工智能·机器学习
刘 怼怼3 小时前
使用 Vue 重构 RAGFlow 实现聊天功能
前端·vue.js·人工智能·重构