mac m1芯片 pytorch安装及gpu性能测试

pytorch 使用mac的m1芯片进行模型训练。

#小结:在数据量小模型参数少batch_size小时 ,cpu训练更快(原因:每次训练时数据需要放入GPU中,由于batch_size小。数据放入gpu比模型计算时间还长)

数据量大(或者batch size大)或者模型参数多 时,使用GPU训练优势明显

当模型参数大于100时,使用GPU比CPU开始有优势
注意mac gpu device是 mps ,不是cudn. device= torch.device("mps")

1 pytorch 安装及gpu验证

1.1 安装

mac需要安装 night 版本的pytorch
mac安装官网地址

复制代码
conda install pytorch torchvision torchaudio -c pytorch-nightly
# 或者
pip3 install --pre torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/nightly/cpu

1.2 gpu验证

主要是执行:torch.backends.mps.is_available()

以下代码输出: tensor([1.], device='mps:0')

复制代码
import torch
if torch.backends.mps.is_available():
    mps_device = torch.device("mps")
    x = torch.ones(1, device=mps_device)
    print (x)
else:
    print ("MPS device not found.")

2 mac m1芯片验证

实验1 :batch_size=32, 模型参数 parameter_num=476,720

gpu 运行时长: 1min 36s

cpu 运行时长: 37.5s

实验2 :batch_size=512, 模型参数 parameter_num=476,720

gpu 运行时长: 16s

cpu 运行时长: 13.3s

实验3 :batch_size=1024, 模型参数 parameter_num=476,720

gpu 运行时长: 12.7s

cpu 运行时长: 12.4s

实验4 :batch_size=1024, 模型参数 parameter_num=6,904,128

gpu 运行时长: 13.9s

cpu 运行时长: 23.8s

实验5 :batch_size=1024, 模型参数 parameter_num=23,685,440

gpu 运行时长: 20.5s

cpu 运行时长: 53.5s

实验6 :batch_size=1024, 模型参数 parameter_num=203,618,624

gpu 运行时长: 4min 11s

cpu 运行时长: 6min 49s

附录

测试代码

复制代码
import torch
from torch.utils.data import DataLoader
from torchvision import datasets,transforms
from  torch import nn,optim
batch_size=1024
mnist_train=datasets.MNIST("mnist",True,transform=transforms.Compose([
    transforms.ToTensor()    ]),download=True)
mnist_train=DataLoader(mnist_train,batch_size=batch_size,shuffle=True)
minst_test=datasets.MNIST("mnist",False,transform=transforms.Compose([
    transforms.ToTensor()  ]),download=True)
minst_test=DataLoader(minst_test,batch_size=batch_size,shuffle=True)
x,lable=next(iter(mnist_train))
print(lable)
x.shape

device=torch.device("mps")
autoencoder=AE().to(device)
critenon=nn.MSELoss()
optimizer=optim.Adam(autoencoder.parameters(),lr=1e-4)

autoencoder2=AE()
critenon2=nn.MSELoss()
optimizer2=optim.Adam(autoencoder2.parameters(),lr=1e-4)

# GPU 训练
#%%time
for epoch in range(5):
    for index,(x,_) in enumerate(mnist_train):
        x=x.to(device)
        x_hat=autoencoder(x)
        loss=critenon(x_hat,x)
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
    print(epoch,"loss: ",loss.item())
    
# CPU训练
# %%time
for epoch in range(5):
    for index,(x,_) in enumerate(mnist_train):
        x=x
        x_hat=autoencoder2(x)
        loss=critenon2(x_hat,x)
        optimizer2.zero_grad()
        loss.backward()
        optimizer2.step()
    print(epoch,"loss: ",loss.item())

total_params = sum(p.numel() for p in autoencoder2.parameters())
print("Total Parameters: {:,}".format(total_params))

实验1

实验3

实验4

相关推荐
ACP广源盛1392462567318 分钟前
(ACP广源盛)GSV1175---- MIPI/LVDS 转 Type-C/DisplayPort 1.2 转换器产品说明及功能分享
人工智能·音视频
胡耀超21 分钟前
隐私计算技术全景:从联邦学习到可信执行环境的实战指南—数据安全——隐私计算 联邦学习 多方安全计算 可信执行环境 差分隐私
人工智能·安全·数据安全·tee·联邦学习·差分隐私·隐私计算
停停的茶2 小时前
深度学习(目标检测)
人工智能·深度学习·目标检测
Y200309162 小时前
基于 CIFAR10 数据集的卷积神经网络(CNN)模型训练与集成学习
人工智能·cnn·集成学习
老兵发新帖2 小时前
主流神经网络快速应用指南
人工智能·深度学习·神经网络
AI量化投资实验室3 小时前
15年122倍,年化43.58%,回撤才20%,Optuna机器学习多目标调参backtrader,附python代码
人工智能·python·机器学习
java_logo3 小时前
vllm-openai Docker 部署手册
运维·人工智能·docker·ai·容器
倔强青铜三3 小时前
苦练Python第67天:光速读取任意行,linecache模块解锁文件处理新姿势
人工智能·python·面试
算家计算3 小时前
重磅突破!全球首个真实物理环境机器人基准测试正式发布,具身智能迎来 “ImageNet 时刻”
人工智能·资讯
新智元3 小时前
苹果 M5「夜袭」高通英特尔!AI 算力狂飙 400%,Pro 三剑客火速上新
人工智能·openai