Polars基本操作-Lazy API

【本文仅表明作者粗浅理解】

如果有不同观点,那么一定是您说得对!!

在Polars中,有两种常见的操作方式:Lazy API和eager API。

先看Lazy API

python 复制代码
import polars as pl

# 创建一个DataFrame
df = pl.DataFrame({
    'col1': [1, 2, 3, 4, 5],
    'col2': ['A', 'B', 'C', 'D', 'E']
})

# 使用Lazy API进行操作
lazy_result = (
    df.lazy()
    .filter(pl.col('col1') > 2)
    .select(pl.col('col2'))
    .sort(pl.col('col2'))
)

# 执行Lazy操作并显示结果
eager_result = lazy_result.collect()
print(eager_result)

首先代码里加上了 df.lazy(),调用时候要用到collect()方法才真的执行,否则只是准备了,并不做。

以下是猫哥对Lazy API个人理解:

Lazy API是一个黑盒子。程序员只需使用Lazy API构建计算计划,而不需要手动干预计划的优化和执行过程。

Polars会在执行计划时自动应用优化策略,例如基于操作之间的依赖关系进行重排、选择合适的算法和数据结构等。这些优化都是由Polars内部自动完成的,程序员无需手动编写优化代码。

与Python的垃圾处理机制类似,Lazy API隐藏了底层的优化细节,提供了简洁的接口供程序员使用。程序员只需关注计算逻辑的构建,而无需关心具体的优化实现。

因此,使用Lazy API可以让程序员更专注于业务逻辑的实现,而无需深入研究和调优底层的执行细节。同时,Polars的优化策略会尽力提高执行性能,使得程序员能够获得更高效的数据处理结果。

eager API,目前没查到相关资料,没有显式调用。貌似不明确lazy(),就是直接计算,也就是eager了。

Pandas中,没发现类似的lazy()。强行sleep()这个不算。

相关推荐
喵~来学编程啦几秒前
【一篇搞定配置】一篇带你从配置到使用(PyCharm远程)完成服务器运行项目(配置、使用一条龙)【全网最详细版】
服务器·python·pycharm
超级大的菠萝2 分钟前
怎么在Pycharm里面添加模块
ide·python·pycharm
geovindu26 分钟前
python: State Pattern
python·状态模式
清水白石00839 分钟前
从频繁“握手”到高效通行:Python 数据库连接池深度解析与调优实战
开发语言·数据库·python
雪碧聊技术43 分钟前
生成器是什么?有什么用?
python·生成器·yield
岱宗夫up1 小时前
FastAPI进阶3:云原生架构与DevOps最佳实践
前端·python·云原生·架构·前端框架·fastapi·devops
~央千澈~1 小时前
抖音弹幕游戏开发之第15集:添加配置文件·优雅草云桧·卓伊凡
java·前端·python
进阶的鱼1 小时前
一文了解RAG———检索增强生成
人工智能·python·ai编程
测试工坊1 小时前
Android 内存采集避坑指南:一个命令 5ms,一个命令 15 秒,你选哪个?
python
JaydenAI1 小时前
[拆解LangChain执行引擎]回到过去,开启平行世界[上篇]
python·langchain