Polars基本操作-Lazy API

【本文仅表明作者粗浅理解】

如果有不同观点,那么一定是您说得对!!

在Polars中,有两种常见的操作方式:Lazy API和eager API。

先看Lazy API

python 复制代码
import polars as pl

# 创建一个DataFrame
df = pl.DataFrame({
    'col1': [1, 2, 3, 4, 5],
    'col2': ['A', 'B', 'C', 'D', 'E']
})

# 使用Lazy API进行操作
lazy_result = (
    df.lazy()
    .filter(pl.col('col1') > 2)
    .select(pl.col('col2'))
    .sort(pl.col('col2'))
)

# 执行Lazy操作并显示结果
eager_result = lazy_result.collect()
print(eager_result)

首先代码里加上了 df.lazy(),调用时候要用到collect()方法才真的执行,否则只是准备了,并不做。

以下是猫哥对Lazy API个人理解:

Lazy API是一个黑盒子。程序员只需使用Lazy API构建计算计划,而不需要手动干预计划的优化和执行过程。

Polars会在执行计划时自动应用优化策略,例如基于操作之间的依赖关系进行重排、选择合适的算法和数据结构等。这些优化都是由Polars内部自动完成的,程序员无需手动编写优化代码。

与Python的垃圾处理机制类似,Lazy API隐藏了底层的优化细节,提供了简洁的接口供程序员使用。程序员只需关注计算逻辑的构建,而无需关心具体的优化实现。

因此,使用Lazy API可以让程序员更专注于业务逻辑的实现,而无需深入研究和调优底层的执行细节。同时,Polars的优化策略会尽力提高执行性能,使得程序员能够获得更高效的数据处理结果。

eager API,目前没查到相关资料,没有显式调用。貌似不明确lazy(),就是直接计算,也就是eager了。

Pandas中,没发现类似的lazy()。强行sleep()这个不算。

相关推荐
应用市场6 分钟前
无人机编队飞行原理与Python仿真实现完整指南
python·无人机·cocos2d
蓝桉~MLGT38 分钟前
Python学习历程——字符串相关操作及正则表达式
python·学习·正则表达式
一晌小贪欢39 分钟前
Python爬虫第5课:正则表达式与数据清洗技术
爬虫·python·正则表达式·网络爬虫·python爬虫·python3·网页爬虫
Nina_7171 小时前
Google提示词白皮书总结(2)
人工智能·python
Lynnxiaowen1 小时前
今天我们继续学习python3编程之python基础
linux·运维·python·学习
hui函数2 小时前
Python全栈(基础篇)——Day10:后端内容(map+reduce+filter+sorted+实战演示+每日一题)
后端·python
hui函数2 小时前
Python全栈(基础篇)——Day13:后端内容(模块详解)
后端·python
西柚小萌新2 小时前
【深入浅出PyTorch】--7.2.PyTorch可视化2
人工智能·pytorch·python
java1234_小锋2 小时前
TensorFlow2 Python深度学习 - 使用TensorBoard可视化数据
python·深度学习·tensorflow·tensorflow2
源来是大数据的菜鸟2 小时前
基于Multi-Agent开发的SmartCare系统自动化运维管家
python·运维开发