Polars基本操作-Lazy API

【本文仅表明作者粗浅理解】

如果有不同观点,那么一定是您说得对!!

在Polars中,有两种常见的操作方式:Lazy API和eager API。

先看Lazy API

python 复制代码
import polars as pl

# 创建一个DataFrame
df = pl.DataFrame({
    'col1': [1, 2, 3, 4, 5],
    'col2': ['A', 'B', 'C', 'D', 'E']
})

# 使用Lazy API进行操作
lazy_result = (
    df.lazy()
    .filter(pl.col('col1') > 2)
    .select(pl.col('col2'))
    .sort(pl.col('col2'))
)

# 执行Lazy操作并显示结果
eager_result = lazy_result.collect()
print(eager_result)

首先代码里加上了 df.lazy(),调用时候要用到collect()方法才真的执行,否则只是准备了,并不做。

以下是猫哥对Lazy API个人理解:

Lazy API是一个黑盒子。程序员只需使用Lazy API构建计算计划,而不需要手动干预计划的优化和执行过程。

Polars会在执行计划时自动应用优化策略,例如基于操作之间的依赖关系进行重排、选择合适的算法和数据结构等。这些优化都是由Polars内部自动完成的,程序员无需手动编写优化代码。

与Python的垃圾处理机制类似,Lazy API隐藏了底层的优化细节,提供了简洁的接口供程序员使用。程序员只需关注计算逻辑的构建,而无需关心具体的优化实现。

因此,使用Lazy API可以让程序员更专注于业务逻辑的实现,而无需深入研究和调优底层的执行细节。同时,Polars的优化策略会尽力提高执行性能,使得程序员能够获得更高效的数据处理结果。

eager API,目前没查到相关资料,没有显式调用。貌似不明确lazy(),就是直接计算,也就是eager了。

Pandas中,没发现类似的lazy()。强行sleep()这个不算。

相关推荐
梦想画家1 分钟前
Python Polars快速入门指南:LazyFrames
python·数据分析·polars
程序猿000001号14 分钟前
使用Python的Seaborn库进行数据可视化
开发语言·python·信息可视化
API快乐传递者23 分钟前
Python爬虫获取淘宝详情接口详细解析
开发语言·爬虫·python
公众号Codewar原创作者25 分钟前
R数据分析:工具变量回归的做法和解释,实例解析
开发语言·人工智能·python
FL162386312930 分钟前
python版本的Selenium的下载及chrome环境搭建和简单使用
chrome·python·selenium
巫师不要去魔法部乱说34 分钟前
PyCharm专项训练5 最短路径算法
python·算法·pycharm
Chloe.Zz40 分钟前
Python基础知识回顾
python
骑个小蜗牛1 小时前
Python 标准库:random——随机数
python
Trouvaille ~1 小时前
【机器学习】从流动到恒常,无穷中归一:积分的数学诗意
人工智能·python·机器学习·ai·数据分析·matplotlib·微积分
是十一月末1 小时前
Opencv实现图像的腐蚀、膨胀及开、闭运算
人工智能·python·opencv·计算机视觉