Polars基本操作-Lazy API

【本文仅表明作者粗浅理解】

如果有不同观点,那么一定是您说得对!!

在Polars中,有两种常见的操作方式:Lazy API和eager API。

先看Lazy API

python 复制代码
import polars as pl

# 创建一个DataFrame
df = pl.DataFrame({
    'col1': [1, 2, 3, 4, 5],
    'col2': ['A', 'B', 'C', 'D', 'E']
})

# 使用Lazy API进行操作
lazy_result = (
    df.lazy()
    .filter(pl.col('col1') > 2)
    .select(pl.col('col2'))
    .sort(pl.col('col2'))
)

# 执行Lazy操作并显示结果
eager_result = lazy_result.collect()
print(eager_result)

首先代码里加上了 df.lazy(),调用时候要用到collect()方法才真的执行,否则只是准备了,并不做。

以下是猫哥对Lazy API个人理解:

Lazy API是一个黑盒子。程序员只需使用Lazy API构建计算计划,而不需要手动干预计划的优化和执行过程。

Polars会在执行计划时自动应用优化策略,例如基于操作之间的依赖关系进行重排、选择合适的算法和数据结构等。这些优化都是由Polars内部自动完成的,程序员无需手动编写优化代码。

与Python的垃圾处理机制类似,Lazy API隐藏了底层的优化细节,提供了简洁的接口供程序员使用。程序员只需关注计算逻辑的构建,而无需关心具体的优化实现。

因此,使用Lazy API可以让程序员更专注于业务逻辑的实现,而无需深入研究和调优底层的执行细节。同时,Polars的优化策略会尽力提高执行性能,使得程序员能够获得更高效的数据处理结果。

eager API,目前没查到相关资料,没有显式调用。貌似不明确lazy(),就是直接计算,也就是eager了。

Pandas中,没发现类似的lazy()。强行sleep()这个不算。

相关推荐
wyiyiyi20 分钟前
【Web后端】Django、flask及其场景——以构建系统原型为例
前端·数据库·后端·python·django·flask
mit6.82436 分钟前
[1Prompt1Story] 滑动窗口机制 | 图像生成管线 | VAE变分自编码器 | UNet去噪神经网络
人工智能·python
没有bug.的程序员40 分钟前
JVM 总览与运行原理:深入Java虚拟机的核心引擎
java·jvm·python·虚拟机
甄超锋1 小时前
Java ArrayList的介绍及用法
java·windows·spring boot·python·spring·spring cloud·tomcat
AntBlack2 小时前
不当韭菜V1.1 :增强能力 ,辅助构建自己的交易规则
后端·python·pyqt
杜子不疼.4 小时前
《Python学习之字典(一):基础操作与核心用法》
开发语言·python·学习
myzzb5 小时前
基于uiautomation的自动化流程RPA开源开发演示
运维·python·学习·算法·自动化·rpa
TLuoQiu5 小时前
小电视视频内容获取GUI工具
爬虫·python
我叫黑大帅5 小时前
【CustomTkinter】 python可以写前端?😆
后端·python
胡耀超5 小时前
DataOceanAI Dolphin(ffmpeg音频转化教程) 多语言(中国方言)语音识别系统部署与应用指南
python·深度学习·ffmpeg·音视频·语音识别·多模态·asr