目录

Polars基本操作-Lazy API

【本文仅表明作者粗浅理解】

如果有不同观点,那么一定是您说得对!!

在Polars中,有两种常见的操作方式:Lazy API和eager API。

先看Lazy API

python 复制代码
import polars as pl

# 创建一个DataFrame
df = pl.DataFrame({
    'col1': [1, 2, 3, 4, 5],
    'col2': ['A', 'B', 'C', 'D', 'E']
})

# 使用Lazy API进行操作
lazy_result = (
    df.lazy()
    .filter(pl.col('col1') > 2)
    .select(pl.col('col2'))
    .sort(pl.col('col2'))
)

# 执行Lazy操作并显示结果
eager_result = lazy_result.collect()
print(eager_result)

首先代码里加上了 df.lazy(),调用时候要用到collect()方法才真的执行,否则只是准备了,并不做。

以下是猫哥对Lazy API个人理解:

Lazy API是一个黑盒子。程序员只需使用Lazy API构建计算计划,而不需要手动干预计划的优化和执行过程。

Polars会在执行计划时自动应用优化策略,例如基于操作之间的依赖关系进行重排、选择合适的算法和数据结构等。这些优化都是由Polars内部自动完成的,程序员无需手动编写优化代码。

与Python的垃圾处理机制类似,Lazy API隐藏了底层的优化细节,提供了简洁的接口供程序员使用。程序员只需关注计算逻辑的构建,而无需关心具体的优化实现。

因此,使用Lazy API可以让程序员更专注于业务逻辑的实现,而无需深入研究和调优底层的执行细节。同时,Polars的优化策略会尽力提高执行性能,使得程序员能够获得更高效的数据处理结果。

eager API,目前没查到相关资料,没有显式调用。貌似不明确lazy(),就是直接计算,也就是eager了。

Pandas中,没发现类似的lazy()。强行sleep()这个不算。

本文是转载文章,点击查看原文
如有侵权,请联系 xyy@jishuzhan.net 删除
相关推荐
失去妙妙屋的米奇2 小时前
matplotlib数据展示
开发语言·图像处理·python·计算机视觉·matplotlib
搞不懂语言的程序员3 小时前
备忘录模式深度解析与实战案例
数据库·python·备忘录模式
爱的叹息3 小时前
关于 JDK 中的 jce.jar 的详解,以及与之功能类似的主流加解密工具的详细对比分析
java·python·jar
Lhuu(重开版3 小时前
2025第十六届蓝桥杯PythonB组部分题解
python
程丞Q香4 小时前
python——学生管理系统
开发语言·python·pycharm
dragon_perfect4 小时前
ubuntu22.04上设定Service程序自启动,自动运行Conda环境下的Python脚本(亲测)
开发语言·人工智能·python·conda
明月看潮生5 小时前
青少年编程与数学 02-016 Python数据结构与算法 15课题、字符串匹配
python·算法·青少年编程·编程与数学
凡人的AI工具箱5 小时前
PyTorch深度学习框架60天进阶学习计划 - 第41天:生成对抗网络进阶(一)
人工智能·pytorch·python·深度学习·学习·生成对抗网络
是大嘟嘟呀6 小时前
爬虫框架 - Coocan
python·系统架构·网络爬虫