Polars基本操作-Lazy API

【本文仅表明作者粗浅理解】

如果有不同观点,那么一定是您说得对!!

在Polars中,有两种常见的操作方式:Lazy API和eager API。

先看Lazy API

python 复制代码
import polars as pl

# 创建一个DataFrame
df = pl.DataFrame({
    'col1': [1, 2, 3, 4, 5],
    'col2': ['A', 'B', 'C', 'D', 'E']
})

# 使用Lazy API进行操作
lazy_result = (
    df.lazy()
    .filter(pl.col('col1') > 2)
    .select(pl.col('col2'))
    .sort(pl.col('col2'))
)

# 执行Lazy操作并显示结果
eager_result = lazy_result.collect()
print(eager_result)

首先代码里加上了 df.lazy(),调用时候要用到collect()方法才真的执行,否则只是准备了,并不做。

以下是猫哥对Lazy API个人理解:

Lazy API是一个黑盒子。程序员只需使用Lazy API构建计算计划,而不需要手动干预计划的优化和执行过程。

Polars会在执行计划时自动应用优化策略,例如基于操作之间的依赖关系进行重排、选择合适的算法和数据结构等。这些优化都是由Polars内部自动完成的,程序员无需手动编写优化代码。

与Python的垃圾处理机制类似,Lazy API隐藏了底层的优化细节,提供了简洁的接口供程序员使用。程序员只需关注计算逻辑的构建,而无需关心具体的优化实现。

因此,使用Lazy API可以让程序员更专注于业务逻辑的实现,而无需深入研究和调优底层的执行细节。同时,Polars的优化策略会尽力提高执行性能,使得程序员能够获得更高效的数据处理结果。

eager API,目前没查到相关资料,没有显式调用。貌似不明确lazy(),就是直接计算,也就是eager了。

Pandas中,没发现类似的lazy()。强行sleep()这个不算。

相关推荐
Learn-Python24 分钟前
MongoDB-only方法
python·sql
小途软件1 小时前
用于机器人电池电量预测的Sarsa强化学习混合集成方法
java·人工智能·pytorch·python·深度学习·语言模型
扫地的小何尚2 小时前
NVIDIA RTX PC开源AI工具升级:加速LLM和扩散模型的性能革命
人工智能·python·算法·开源·nvidia·1024程序员节
wanglei2007082 小时前
生产者消费者
开发语言·python
清水白石0083 小时前
《从零到进阶:Pydantic v1 与 v2 的核心差异与零成本校验实现原理》
数据库·python
昵称已被吞噬~‘(*@﹏@*)’~3 小时前
【RL+空战】学习记录03:基于JSBSim构造简易空空导弹模型,并结合python接口调用测试
开发语言·人工智能·python·学习·深度强化学习·jsbsim·空战
2501_941877983 小时前
从配置热更新到运行时自适应的互联网工程语法演进与多语言实践随笔分享
开发语言·前端·python
酩酊仙人3 小时前
fastmcp构建mcp server和client
python·ai·mcp
且去填词4 小时前
DeepSeek API 深度解析:从流式输出、Function Calling 到构建拥有“手脚”的 AI 应用
人工智能·python·语言模型·llm·agent·deepseek
rgeshfgreh4 小时前
Python条件与循环实战指南
python