详解Keras3.0 Layer API: Dropout layer

Dropout layer

图1 标准的神经网络

图2 加了Dropout临时删除部分神经元

Dropout层的作用是在神经网络中引入正则化,以防止过拟合。它通过随机丢弃一部分神经元(如图2)的输出来减少模型对训练数据的依赖性。这样可以提高模型的泛化能力,使其在测试数据上表现更好。

Dropout层的核心思想是减小神经网络中权重共享的情况,让不同的神经元可以承担不同的特征提取任务。由于每个神经元被丢弃的概率相同,因此每一轮训练都可能得到不同的网络结构,这有助于提高模型的泛化能力。同时,Dropout也有助于减少神经元之间的依赖性,增强模型的鲁棒性。

工作原理
  • 在训练阶段,对于每一层神经元,以一定的概率p随机选择一部分神经元,将它们的输出置为0。这样,每一层的神经元有p的概率被保留,也有p的概率被丢弃。
  • 在前向传播过程中,每一层神经元的输入会经过Dropout处理,保留概率p的神经元进行计算。
  • 在反向传播过程中,梯度会根据未被丢弃的神经元的权重进行传播。这意味着在更新权重时,被丢弃的神经元的权重不会被更新。
  • 在测试阶段,为了使用训练阶段得到的网络集合,每个神经元的输出需要乘以概率p。这样做的目的是为了在测试时模拟出与训练阶段相同的网络结构。
python 复制代码
keras.layers.Dropout(rate, noise_shape=None, seed=None, **kwargs)
参数说明
  • **rate:**在0和1之间浮动。要丢弃的输入单位的分数。
  • **noise_shape:**表示将与输入相乘的二进制丢弃掩码的形状的1D整数张量。例如,如果输入具有形状(batch_size,时间步长,features),并且希望所有时间步长的丢弃掩码相同,则可以使用noise_shape=(batch_size,1,features.)。
  • **seed:**用作随机种子的Python整数。
示例
python 复制代码
# 导入所需的库
from keras.models import Sequential
from keras.layers import Dense, Dropout

# 创建一个Sequential模型
model = Sequential()

#添加全连接层(Dense)
model.add(Dense(units=64, activation='relu', input_dim=100))

#在全连接层之后添加一个Dropout层,丢弃率为0.5
model.add(Dropout(rate=0.5))

#添加全连接层
model.add(Dense(units=10, activation='softmax'))

#编译模型,设置损失函数、优化器和评估指标
model.compile(loss='categorical_crossentropy',
              optimizer='adam',
              metrics=['accuracy'])
相关推荐
人工小情绪1 分钟前
大模型运行的基本机制
人工智能
brave and determined5 分钟前
可编程逻辑器件学习(day24):异构计算:突破算力瓶颈的未来之路
人工智能·嵌入式硬件·深度学习·学习·算法·fpga·asic
南山安10 分钟前
让 LLM 与外界对话:使用 Function Calling 实现天气查询工具
人工智能·后端·python
用户51914958484511 分钟前
信号、Shell与Docker:层层嵌套的陷阱剖析
人工智能·aigc
文心快码BaiduComate17 分钟前
Comate Figma2Code智能体升级,畅享Figma2Code不受限
人工智能·程序员·前端框架
一RTOS一31 分钟前
工业AI安监超脑,为智能建造打造“安全数字底座”
人工智能·安全
云安全联盟大中华区34 分钟前
构建AI原生工程组织:关于速度、文化与安全的经验
人工智能·安全·web安全·网络安全·ai·ai-native
nju_spy40 分钟前
论文阅读 - 深度学习端到端解决库存管理问题 - 有限时间范围内的多周期补货问题(Management Science)
人工智能·深度学习·动态规划·端到端·库存管理·两阶段pto·多周期补货问题
u***j32441 分钟前
深度学习实践
人工智能·深度学习
r***d86544 分钟前
深度学习挑战
人工智能·深度学习