详解Keras3.0 Layer API: Dropout layer

Dropout layer

图1 标准的神经网络

图2 加了Dropout临时删除部分神经元

Dropout层的作用是在神经网络中引入正则化,以防止过拟合。它通过随机丢弃一部分神经元(如图2)的输出来减少模型对训练数据的依赖性。这样可以提高模型的泛化能力,使其在测试数据上表现更好。

Dropout层的核心思想是减小神经网络中权重共享的情况,让不同的神经元可以承担不同的特征提取任务。由于每个神经元被丢弃的概率相同,因此每一轮训练都可能得到不同的网络结构,这有助于提高模型的泛化能力。同时,Dropout也有助于减少神经元之间的依赖性,增强模型的鲁棒性。

工作原理
  • 在训练阶段,对于每一层神经元,以一定的概率p随机选择一部分神经元,将它们的输出置为0。这样,每一层的神经元有p的概率被保留,也有p的概率被丢弃。
  • 在前向传播过程中,每一层神经元的输入会经过Dropout处理,保留概率p的神经元进行计算。
  • 在反向传播过程中,梯度会根据未被丢弃的神经元的权重进行传播。这意味着在更新权重时,被丢弃的神经元的权重不会被更新。
  • 在测试阶段,为了使用训练阶段得到的网络集合,每个神经元的输出需要乘以概率p。这样做的目的是为了在测试时模拟出与训练阶段相同的网络结构。
python 复制代码
keras.layers.Dropout(rate, noise_shape=None, seed=None, **kwargs)
参数说明
  • **rate:**在0和1之间浮动。要丢弃的输入单位的分数。
  • **noise_shape:**表示将与输入相乘的二进制丢弃掩码的形状的1D整数张量。例如,如果输入具有形状(batch_size,时间步长,features),并且希望所有时间步长的丢弃掩码相同,则可以使用noise_shape=(batch_size,1,features.)。
  • **seed:**用作随机种子的Python整数。
示例
python 复制代码
# 导入所需的库
from keras.models import Sequential
from keras.layers import Dense, Dropout

# 创建一个Sequential模型
model = Sequential()

#添加全连接层(Dense)
model.add(Dense(units=64, activation='relu', input_dim=100))

#在全连接层之后添加一个Dropout层,丢弃率为0.5
model.add(Dropout(rate=0.5))

#添加全连接层
model.add(Dense(units=10, activation='softmax'))

#编译模型,设置损失函数、优化器和评估指标
model.compile(loss='categorical_crossentropy',
              optimizer='adam',
              metrics=['accuracy'])
相关推荐
Jamie201901065 分钟前
高档宠物食品对宠物的健康益处有哪些?
大数据·人工智能
蓝婷儿20 分钟前
Python 机器学习核心入门与实战进阶 Day 2 - KNN(K-近邻算法)分类实战与调参
python·机器学习·近邻算法
云卓SKYDROID26 分钟前
无人机载重模块技术要点分析
人工智能·无人机·科普·高科技·云卓科技
云卓SKYDROID28 分钟前
无人机RTK技术要点与难点分析
人工智能·无人机·科普·高科技·云卓科技
麻雀无能为力1 小时前
CAU数据挖掘 支持向量机
人工智能·支持向量机·数据挖掘·中国农业大学计算机
智能汽车人1 小时前
Robot---能打羽毛球的机器人
人工智能·机器人·强化学习
埃菲尔铁塔_CV算法1 小时前
基于 TOF 图像高频信息恢复 RGB 图像的原理、应用与实现
人工智能·深度学习·数码相机·算法·目标检测·计算机视觉
ζั͡山 ั͡有扶苏 ั͡✾2 小时前
AI辅助编程工具对比分析:Cursor、Copilot及其他主流选择
人工智能·copilot·cursor
东临碣石822 小时前
【AI论文】数学推理能否提升大型语言模型(LLM)的通用能力?——探究大型语言模型推理能力的可迁移性
人工智能·语言模型·自然语言处理
IT古董2 小时前
【第二章:机器学习与神经网络概述】04.回归算法理论与实践 -(3)决策树回归模型(Decision Tree Regression)
神经网络·机器学习·回归