ElasticSearch Nested类型全文检索、聚合查询

ElasticSearch Nested类型全文检索、聚合查询

Nested类型全文检索

  1. 创建索引
bash 复制代码
PUT /products1
{
  "mappings": {
    "properties": {
      "fulltext": {
          "type": "text"
        },
      "name": {
        "type": "text",
        "fields": {
          "keyword": {
            "type": "keyword",
            "ignore_above": 256
          }
        }
      },
      "reviews": {
        "type": "nested",
        "properties": {
          "rating": {
            "type": "integer"
          },
          "author": {
            "type": "text",
            "copy_to": "fulltext"
          },
          "date": {
            "type": "date"
          }
        }
      }
    }
  }
}

以上创建索引语句中实现全文检索重点为"fulltext": { "type": "text" }"copy_to": "fulltext",nested类型中哪个text类型的字段需要全文检索,就在字段上加"copy_to": "fulltext"

  1. 添加数据
bash 复制代码
PUT /products1/_doc/1
{
  "name": "Product A",
  "reviews": [
    {
      "rating": 5,
      "author": "Alice",
      "date": "2021-01-01"
    },
    {
      "rating": 4,
      "author": "Bob",
      "date": "2021-01-02"
    }
  ]
}

PUT /products1/_doc/2
{
  "name": "Product B",
  "reviews": [
    {
      "rating": 1,
      "author": "John",
      "date": "2021-01-03"
    },
    {
      "rating": 2,
      "author": "Mary",
      "date": "2021-01-04"
    },
    {
      "rating": 3,
      "author": "James",
      "date": "2021-01-05"
    },
    {
      "rating": 4,
      "author": "Elisabeth",
      "date": "2021-01-06"
    },
    {
      "rating": 5,
      "author": "Richard",
      "date": "2021-01-07"
    }
  ]
}


PUT /products1/_doc/3
{
  "name": "Product C",
  "reviews": [
    {
      "rating": 1,
      "author": "Alex",
      "date": "2021-01-03"
    },
    {
      "rating": 2,
      "author": "Alice",
      "date": "2021-01-04"
    }
  ]
}
  1. 执行查询
bash 复制代码
POST products1/_search
{
  "query": {
    "simple_query_string": {
      "query": "Alice"
    }
  }
}
  1. 结果如下,可以看到nested类型中包含Alice的数据也被检索出来了
bash 复制代码
{
  "took" : 2,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 2,
      "relation" : "eq"
    },
    "max_score" : 0.5442147,
    "hits" : [
      {
        "_index" : "products1",
        "_type" : "_doc",
        "_id" : "1",
        "_score" : 0.5442147,
        "_source" : {
          "name" : "Product A",
          "reviews" : [
            {
              "rating" : 5,
              "author" : "Alice",
              "date" : "2021-01-01"
            },
            {
              "rating" : 4,
              "author" : "Bob",
              "date" : "2021-01-02"
            }
          ]
        }
      },
      {
        "_index" : "products1",
        "_type" : "_doc",
        "_id" : "3",
        "_score" : 0.5442147,
        "_source" : {
          "name" : "Product C",
          "reviews" : [
            {
              "rating" : 1,
              "author" : "Alex",
              "date" : "2021-01-03"
            },
            {
              "rating" : 2,
              "author" : "Alice",
              "date" : "2021-01-04"
            }
          ]
        }
      }
    ]
  }
}

以上可以看到实现nested类型全文检索

nested类型聚合查询

还是在上面product1索引中测试

  1. 现在,您可以对嵌套文档执行嵌套聚合。例如,让我们计算每个产品的平均评分:
bash 复制代码
GET /products1/_search
{
  "size": 0,
  "aggs": {
    "聚合名称": {
      "terms": {
        "field": "name.keyword"
      },
      "aggs": {
        "reviews": {
          "nested": {
            "path": "reviews"
          },
          "aggs": {
            "average_rating": {
              "avg": {
                "field": "reviews.rating"
              }
            }
          }
        }
      }
    }
  }
}
  1. 我们首先使用术语聚合为每个产品创建存储桶。然后,对于每个产品,我们运行嵌套聚合,以便我们可以访问嵌套文档的集合。最后,我们可以计算这些嵌套文档的指标聚合,在我们的示例中是平均评分
bash 复制代码
{
  "took" : 3,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 3,
      "relation" : "eq"
    },
    "max_score" : null,
    "hits" : [ ]
  },
  "aggregations" : {
    "products" : {
      "doc_count_error_upper_bound" : 0,
      "sum_other_doc_count" : 0,
      "buckets" : [
        {
          "key" : "Product A",
          "doc_count" : 1,
          "reviews" : {
            "doc_count" : 2,
            "average_rating" : {
              "value" : 4.5
            }
          }
        },
        {
          "key" : "Product B",
          "doc_count" : 1,
          "reviews" : {
            "doc_count" : 5,
            "average_rating" : {
              "value" : 3.0
            }
          }
        },
        {
          "key" : "Product C",
          "doc_count" : 1,
          "reviews" : {
            "doc_count" : 2,
            "average_rating" : {
              "value" : 1.5
            }
          }
        }
      ]
    }
  }
}
相关推荐
Mephisto.java3 小时前
【大数据学习 | Spark】Spark的改变分区的算子
大数据·elasticsearch·oracle·spark·kafka·memcache
mqiqe3 小时前
Elasticsearch 分词器
python·elasticsearch
小马爱打代码3 小时前
Elasticsearch简介与实操
大数据·elasticsearch·搜索引擎
java1234_小锋12 小时前
Elasticsearch是如何实现Master选举的?
大数据·elasticsearch·搜索引擎
梦幻通灵18 小时前
ES分词环境实战
大数据·elasticsearch·搜索引擎
Elastic 中国社区官方博客18 小时前
Elasticsearch 中的热点以及如何使用 AutoOps 解决它们
大数据·运维·elasticsearch·搜索引擎·全文检索
小黑屋说YYDS1 天前
ElasticSearch7.x入门教程之索引概念和基础操作(三)
elasticsearch
Java 第一深情1 天前
Linux上安装单机版ElasticSearch6.8.1
linux·elasticsearch·全文检索
KevinAha2 天前
Elasticsearch 6.8 分析器
elasticsearch
wuxingge2 天前
elasticsearch7.10.2集群部署带认证
运维·elasticsearch