kafka处理大量消息积压tips —— 筑梦之路

一、consumer导致kafka积压了大量消息

场景:

  1. 如果是Kafka消费能力不足,则可以考虑增加 topic 的 partition 的个数,

同时提升消费者组的消费者数量,消费数 = 分区数 (二者缺一不可)

  1. 若是下游数据处理不及时,则提高每批次拉取的数量。批次拉取数量过少

(拉取数据/处理时间 < 生产速度),使处理的数据小于生产的数据,也会造成数据积压。

方法:

  1. 增大partion数量,

  2. 消费者加了并发,服务, 扩大消费线程

  3. 增加消费组服务数量

  4. kafka单机升级成了集群

  5. 避免消费者消费消息时间过长,导致超时

  6. 使Kafka分区之间的数据均匀分布

二、消息过期失效

产生消息堆积,消费不及时,kafka数据有过期时间,一些数据就丢失了,主要是消费不及时

经验

  1. 消费kafka消息时,应该尽量减少每次消费时间,可通过减少调用三方接口、读库等操作,

从而减少消息堆积的可能性。

  1. 如果消息来不及消费,可以先存在数据库中,然后逐条消费

(还可以保存消费记录,方便定位问题)

  1. 每次接受kafka消息时,先打印出日志,包括消息产生的时间戳。

  2. kafka消息保留时间(修改kafka配置文件, 默认一周)

  3. 任务启动从上次提交offset处开始消费处理

三、综上使用kafka注意事项

  1. 由于Kafka消息key设置,在Kafka producer处,给key加随机后缀,使其均衡

  2. 数据量很大,合理的增加Kafka分区数是关键。

Kafka分区数是Kafka并行度调优的最小单元,如果Kafka分区数设置的太少,

会影响Kafka consumer消费的吞吐量. 如果利用的是Spark流和Kafka direct approach方式,

也可以对KafkaRDD进行repartition重分区,增加并行度处理.

相关推荐
纪莫2 小时前
Kafka如何保证「消息不丢失」,「顺序传输」,「不重复消费」,以及为什么会发生重平衡(reblanace)
java·分布式·后端·中间件·kafka·队列
想躺平的咸鱼干2 小时前
RabbitMQ 基础
java·分布式·rabbitmq·idea·amqp·消息转换器·交换机模型
poemyang4 小时前
千亿消息“过眼云烟”?Kafka把硬盘当内存用的性能魔法,全靠这一手!
kafka·高并发·pagecache·存储架构·顺序i/o·局部性原理
KaiwuDB4 小时前
KWDB 分布式架构探究——数据分布与特性
数据库·分布式
武子康5 小时前
大数据-75 Kafka 高水位线 HW 与日志末端 LEO 全面解析:副本同步与消费一致性核心
大数据·后端·kafka
华仔啊5 小时前
乐观锁、悲观锁和分布式锁,你用对了吗?
java·分布式
艾希逐月19 小时前
分布式唯一 ID 生成方案
分布式
齐木卡卡西在敲代码1 天前
kafka的pull的依据
分布式·kafka
超级迅猛龙1 天前
保姆级Debezium抽取SQL Server同步kafka
数据库·hadoop·mysql·sqlserver·kafka·linq·cdc
lllsure1 天前
RabbitMQ 基础
分布式·rabbitmq