kafka处理大量消息积压tips —— 筑梦之路

一、consumer导致kafka积压了大量消息

场景:

  1. 如果是Kafka消费能力不足,则可以考虑增加 topic 的 partition 的个数,

同时提升消费者组的消费者数量,消费数 = 分区数 (二者缺一不可)

  1. 若是下游数据处理不及时,则提高每批次拉取的数量。批次拉取数量过少

(拉取数据/处理时间 < 生产速度),使处理的数据小于生产的数据,也会造成数据积压。

方法:

  1. 增大partion数量,

  2. 消费者加了并发,服务, 扩大消费线程

  3. 增加消费组服务数量

  4. kafka单机升级成了集群

  5. 避免消费者消费消息时间过长,导致超时

  6. 使Kafka分区之间的数据均匀分布

二、消息过期失效

产生消息堆积,消费不及时,kafka数据有过期时间,一些数据就丢失了,主要是消费不及时

经验

  1. 消费kafka消息时,应该尽量减少每次消费时间,可通过减少调用三方接口、读库等操作,

从而减少消息堆积的可能性。

  1. 如果消息来不及消费,可以先存在数据库中,然后逐条消费

(还可以保存消费记录,方便定位问题)

  1. 每次接受kafka消息时,先打印出日志,包括消息产生的时间戳。

  2. kafka消息保留时间(修改kafka配置文件, 默认一周)

  3. 任务启动从上次提交offset处开始消费处理

三、综上使用kafka注意事项

  1. 由于Kafka消息key设置,在Kafka producer处,给key加随机后缀,使其均衡

  2. 数据量很大,合理的增加Kafka分区数是关键。

Kafka分区数是Kafka并行度调优的最小单元,如果Kafka分区数设置的太少,

会影响Kafka consumer消费的吞吐量. 如果利用的是Spark流和Kafka direct approach方式,

也可以对KafkaRDD进行repartition重分区,增加并行度处理.

相关推荐
ha_lydms20 分钟前
3、Spark 函数_d/e/f/j/h/i/j/k/l
大数据·分布式·spark·函数·数据处理·dataworks·maxcompute
张彦峰ZYF23 分钟前
优化分布式系统性能:热key识别与实战解决方案
redis·分布式·性能优化
张彦峰ZYF32 分钟前
高并发场景下的大 Key 问题及应对策略
redis·分布式·缓存
张彦峰ZYF1 小时前
高并发场景下的缓存击穿问题探析与应对策略
redis·分布式·缓存
Wang's Blog4 小时前
Kafka: 生产者客户端工作机制深度解析
分布式·kafka
Kiyra18 小时前
WebSocket vs HTTP:为什么 IM 系统选择长连接?
分布式·websocket·网络协议·http·设计模式·系统架构·wpf
程序员阿鹏1 天前
分布式事务管理
java·开发语言·分布式
武子康1 天前
Java-213 RocketMQ(MetaQ)演进与核心架构:NameServer/Broker/Producer/Consumer 工作机制
大数据·分布式·架构·消息队列·系统架构·rocketmq·java-rocketmq
2301_767902641 天前
Ceph 分布式存储从入门到实战
分布式·ceph
FinTech老王1 天前
制造业Oracle迁移替换:集中式vs分布式架构如何选择?
分布式·oracle·架构