kafka处理大量消息积压tips —— 筑梦之路

一、consumer导致kafka积压了大量消息

场景:

  1. 如果是Kafka消费能力不足,则可以考虑增加 topic 的 partition 的个数,

同时提升消费者组的消费者数量,消费数 = 分区数 (二者缺一不可)

  1. 若是下游数据处理不及时,则提高每批次拉取的数量。批次拉取数量过少

(拉取数据/处理时间 < 生产速度),使处理的数据小于生产的数据,也会造成数据积压。

方法:

  1. 增大partion数量,

  2. 消费者加了并发,服务, 扩大消费线程

  3. 增加消费组服务数量

  4. kafka单机升级成了集群

  5. 避免消费者消费消息时间过长,导致超时

  6. 使Kafka分区之间的数据均匀分布

二、消息过期失效

产生消息堆积,消费不及时,kafka数据有过期时间,一些数据就丢失了,主要是消费不及时

经验

  1. 消费kafka消息时,应该尽量减少每次消费时间,可通过减少调用三方接口、读库等操作,

从而减少消息堆积的可能性。

  1. 如果消息来不及消费,可以先存在数据库中,然后逐条消费

(还可以保存消费记录,方便定位问题)

  1. 每次接受kafka消息时,先打印出日志,包括消息产生的时间戳。

  2. kafka消息保留时间(修改kafka配置文件, 默认一周)

  3. 任务启动从上次提交offset处开始消费处理

三、综上使用kafka注意事项

  1. 由于Kafka消息key设置,在Kafka producer处,给key加随机后缀,使其均衡

  2. 数据量很大,合理的增加Kafka分区数是关键。

Kafka分区数是Kafka并行度调优的最小单元,如果Kafka分区数设置的太少,

会影响Kafka consumer消费的吞吐量. 如果利用的是Spark流和Kafka direct approach方式,

也可以对KafkaRDD进行repartition重分区,增加并行度处理.

相关推荐
暗离子跃迁28 分钟前
达梦数据库单机部署dmhs同步复制(dm8->kafka)
linux·运维·数据库·分布式·学习·kafka·达梦数据库
代码的知行者4 小时前
分布式数据库中间件-Sharding-JDBC
数据库·分布式·中间件
啾啾Fun4 小时前
Java面试题:分布式ID时钟回拨怎么处理?序列号耗尽了怎么办?
java·分布式·分布式id·八股
计算机毕设定制辅导-无忧学长4 小时前
Kafka 可靠性保障:消息确认与事务机制(一)
分布式·kafka·linq
掘金-我是哪吒8 小时前
分布式微服务系统架构第145集:Jeskson文档-微服务分布式系统架构
分布式·微服务·云原生·架构·系统架构
G探险者13 小时前
为什么 Zookeeper 越扩越慢,而 Nacos 却越扩越快?
分布式·后端
Pitayafruit15 小时前
跟着大厂学架构01:如何利用开源方案,复刻B站那套“永不崩溃”的评论系统?
spring boot·分布式·后端
bxlj_jcj17 小时前
Kafka环境搭建全攻略:从Docker到Java实战
java·docker·kafka
苏格拉没有底_coder20 小时前
引入 Kafka 消息队列解耦热点操作
分布式·kafka
顧棟21 小时前
Zookeeper 3.8.4 安装部署帮助手册
分布式·zookeeper