目标检测开源数据集——COCO数据集

COCO数据集是一个大型的、丰富的物体检测、分割和字幕数据集,全称为Microsoft Common Objects in Context (MS COCO)。该数据集以场景理解为目标,主要从复杂的日常场景中截取,图像中的目标通过精确的segmentation进行位置的标定。这个数据集提供了80个类别,包括行人、汽车、大象等,以及91种材料类别,如草、墙、天空等。整个数据集中个体的数目超过150万个,有超过33万张图片,其中22万张有标注。

COCO数据集的第一个版本于2014年发布,包含16.4万张图像,分为训练集(8.3万张)、验证集(4.1万张)和测试集(4.1万张)。2015年发布了额外的8.1万张图像测试集,包括所有以前的测试图像和4万张新图像。2017年将训练集/验证集分配从8.3万/4.1万更改为11.8万/0.5万张,新的拆分使用相同的图像和标注。2017年测试集是2015年测试集的子集包含4.1万张。此外,2017版本包含一个新的未标注的12.3万张数据集。

COCO数据集不仅适用于物体检测任务,还可以用于语义分割和图像标题生成等任务。由于其大规模和多样性,COCO数据集已成为目标检测领域的基准数据集之一,许多算法都在此数据集上进行了评估和比较。

COCO数据集的每个图像都包含五句图像的语句描述,这些描述由人工编写,并用于评估图像标题生成算法的性能。此外,COCO数据集还提供了关键点检测和字幕生成等任务的标注信息。总的来说,COCO数据集是一个非常丰富和多样的目标检测数据集,它为研究者提供了大量的标注信息,以帮助他们开发和评估新的目标检测算法。这个数据集将继续在目标检测领域发挥重要作用,推动相关技术的不断发展和进步。

地址:数据集地址

链接:https://mp.weixin.qq.com/s?__biz=MzU3NTYxNDA4Ng==\&mid=2247483721\&idx=1\&sn=99bf68b640d54451d364bc5eb5676b57\&chksm=fd213ca0ca56b5b63ce9cf84ab937eb2d6725e2e52f86835bcbbede58fc11786fdb5bc9af07d#rd

关注公众号,每天分享开源数据集

相关推荐
DO_Community1 天前
普通服务器都能跑:深入了解 Qwen3-Next-80B-A3B-Instruct
人工智能·开源·llm·大语言模型·qwen
WWZZ20251 天前
快速上手大模型:机器学习3(多元线性回归及梯度、向量化、正规方程)
人工智能·算法·机器学习·机器人·slam·具身感知
deephub1 天前
深入BERT内核:用数学解密掩码语言模型的工作原理
人工智能·深度学习·语言模型·bert·transformer
PKNLP1 天前
BERT系列模型
人工智能·深度学习·bert
兰亭妙微1 天前
ui设计公司审美积累 | 金融人工智能与用户体验 用户界面仪表盘设计
人工智能·金融·ux
AKAMAI1 天前
安全风暴的绝地反击 :从告警地狱到智能防护
运维·人工智能·云计算
岁月宁静1 天前
深度定制:在 Vue 3.5 应用中集成流式 AI 写作助手的实践
前端·vue.js·人工智能
galaxylove1 天前
Gartner发布数据安全态势管理市场指南:将功能扩展到AI的特定数据安全保护是DSPM发展方向
大数据·人工智能
格林威1 天前
偏振相机在半导体制造的领域的应用
人工智能·深度学习·数码相机·计算机视觉·视觉检测·制造
晓枫-迷麟1 天前
【文献阅读】当代MOF与机器学习
人工智能·机器学习