GPU的硬件架构

SM: streaming Multiprocessor 流多处理器

sm里面有多个(sp)cuda core

32个线程称为一个warp,一个warp是一个基本执行单元

抽象概念:grid 网格 block 块 thread 线程

块中的线程大小是有讲究的,关乎到资源的调度,一般是128,256,512并且是32的倍数

Device:指的是 GPU 芯片。Grid:对应 Device 级别的调度单位,一组block,一个grid中的block可以在多个SM中执行。Block:对应 SM(Streaming Multiprocessor) 级别的调度单位,一组thread,同block中的thread可以协作。Thread:对应 CUDA Core 级别的调度单位,最小执行单元。

一个 thread 一定对应一个 CUDA Core,但是CUDA Core可能对应多个 thread。一个Block内的线程一定会在同一个SM(Streaming Multiprocessor,注意不是后面经常提到的Shared Memory)内,一个SM可以运行多个Block。每一个block内的thread会以warp为单位进行运算,一个warp对应一条指令流,一个warp内的thread是真正同步的,同一个warp内的thread可以读取其他warp的值

c 复制代码
dim3 grid(3, 2);
dim3 block(5, 3);
kernel_fun<<< grid, block >>>(prams...);


cuda的内存模型

典型的CUDA程序的执行流程如下:

  1. 分配host内存,并进行数据初始化;
  2. 分配device内存,并从host将数据拷贝到device上;
  3. 调用CUDA的核函数在device上完成指定的运算;
  4. 将device上的运算结果拷贝到host上;
  5. 释放device和host上分配的内存。

核函数用__global__符号声明,在调用时需要用<<<grid, block>>>来指定kernel要执行的线程数量

在CUDA中,每一个线程都要执行核函数,并且每个线程会分配一个唯一的线程号thread ID,这个ID值可以通过核函数的内置变量threadIdx来获得。

global :在device上执行,从host中调用(一些特定的GPU也可以从device上调用),返回类型必须是void,不支持可变参数参数,不能成为类成员函数。注意用__global__定义的kernel是异步的,这意味着host不会等待kernel执行完就执行下一步。
device :在device上执行,单仅可以从device中调用,不可以和__global__同时用。
host:在host上执行,仅可以从host上调用,一般省略不写,不可以和__global__同时用,但可和__device__,此时函数会在device和host都编译

相关推荐
猫头虎11 小时前
HAMi 2.7.0 发布:全面拓展异构芯片支持,优化GPU资源调度与智能管理
嵌入式硬件·算法·prompt·aigc·embedding·gpu算力·ai-native
猫头虎3 天前
如何解决 pip install -r requirements.txt 本地轮子路径 ‘./packages/xxx.whl’ 不存在 问题
开发语言·网络·python·r语言·pip·gpu算力·国产
防搞活机7 天前
ubuntu 服务器(带NVLink)更新显卡驱动 (巨坑!!)
linux·服务器·深度学习·ubuntu·gpu算力·显卡驱动
炘东5928 天前
vscode连接算力平台
pytorch·vscode·深度学习·gpu算力
SmartBrain16 天前
华为昇腾 950 系列芯片深度解析
服务器·华为·gpu算力
SmartBrain16 天前
华为昇腾 910 到 950 系列 NPU 深度解析
人工智能·华为·gpu算力
九章云极AladdinEdu16 天前
VC维(Vapnik-Chervonenkis Dimension)的故事:模型复杂度的衡量
人工智能·深度学习·机器学习·gpu算力·模型·vc维
我不是QI16 天前
《从零到精通:PyTorch (GPU 加速版) 完整安装指南
人工智能·pytorch·python·程序人生·gpu算力
九章云极AladdinEdu25 天前
超参数自动化调优指南:Optuna vs. Ray Tune 对比评测
运维·人工智能·深度学习·ai·自动化·gpu算力
九章云极AladdinEdu1 个月前
深度学习优化器进化史:从SGD到AdamW的原理与选择
linux·服务器·开发语言·网络·人工智能·深度学习·gpu算力