GPU的硬件架构

SM: streaming Multiprocessor 流多处理器

sm里面有多个(sp)cuda core

32个线程称为一个warp,一个warp是一个基本执行单元

抽象概念:grid 网格 block 块 thread 线程

块中的线程大小是有讲究的,关乎到资源的调度,一般是128,256,512并且是32的倍数

Device:指的是 GPU 芯片。Grid:对应 Device 级别的调度单位,一组block,一个grid中的block可以在多个SM中执行。Block:对应 SM(Streaming Multiprocessor) 级别的调度单位,一组thread,同block中的thread可以协作。Thread:对应 CUDA Core 级别的调度单位,最小执行单元。

一个 thread 一定对应一个 CUDA Core,但是CUDA Core可能对应多个 thread。一个Block内的线程一定会在同一个SM(Streaming Multiprocessor,注意不是后面经常提到的Shared Memory)内,一个SM可以运行多个Block。每一个block内的thread会以warp为单位进行运算,一个warp对应一条指令流,一个warp内的thread是真正同步的,同一个warp内的thread可以读取其他warp的值

c 复制代码
dim3 grid(3, 2);
dim3 block(5, 3);
kernel_fun<<< grid, block >>>(prams...);


cuda的内存模型

典型的CUDA程序的执行流程如下:

  1. 分配host内存,并进行数据初始化;
  2. 分配device内存,并从host将数据拷贝到device上;
  3. 调用CUDA的核函数在device上完成指定的运算;
  4. 将device上的运算结果拷贝到host上;
  5. 释放device和host上分配的内存。

核函数用__global__符号声明,在调用时需要用<<<grid, block>>>来指定kernel要执行的线程数量

在CUDA中,每一个线程都要执行核函数,并且每个线程会分配一个唯一的线程号thread ID,这个ID值可以通过核函数的内置变量threadIdx来获得。

global :在device上执行,从host中调用(一些特定的GPU也可以从device上调用),返回类型必须是void,不支持可变参数参数,不能成为类成员函数。注意用__global__定义的kernel是异步的,这意味着host不会等待kernel执行完就执行下一步。
device :在device上执行,单仅可以从device中调用,不可以和__global__同时用。
host:在host上执行,仅可以从host上调用,一般省略不写,不可以和__global__同时用,但可和__device__,此时函数会在device和host都编译

相关推荐
lixzest1 天前
基于CPU开发或GPU开发的区别
gpu算力
minhuan2 天前
大模型应用:GPU的黑盒拆解:可视化看透大模型并行计算的底层逻辑.67
gpu算力·大模型应用·cuda原理·张量核心·显存解析
科学计算技术爱好者4 天前
NVIDIA GPU 系列用途分类梳理
人工智能·算法·gpu算力
飞鹰515 天前
CUDA高级优化实战:Stream、特殊内存与卷积优化—Week3学习总结
c++·gpt·chatgpt·gpu算力
骥龙5 天前
第一篇:背景篇 - 为什么医院需要自己的超算?
云计算·aigc·gpu算力
minhuan5 天前
大模型应用:拆解大模型算力需求:算力是什么?怎么衡量?如何匹配?.64
人工智能·gpu算力·大模型应用·算力评估·算力优化
绿算技术5 天前
重塑智算存储范式:绿算技术NVMe-oF芯片解决方案全景剖析
人工智能·算法·gpu算力
weixin_307779136 天前
面向通用矩阵乘法(GEMM)负载的GPU建模方法:原理、实现与多场景应用价值
运维·人工智能·线性代数·矩阵·gpu算力
程序员老周6668 天前
10.一文学会GPU与cuda原理,并从其原理来理解FlashAttention
人工智能·深度学习·语言模型·大模型·transformer·gpu算力·cuda
Allen_LVyingbo9 天前
多智能体协作驱动的多模态医疗大模型系统:RAG–KAG双路径知识增强与架构的设计与验证(上)
支持向量机·架构·知识图谱·健康医疗·gpu算力·迭代加深