临床数据挖掘与分析:利用GPU加速Pandas和Scikit-learn处理大规模数据集随着电子健康记录(EHR)的普及和医疗信息化的深入,临床数据分析面临着前所未有的数据规模挑战。传统的基于CPU的Pandas和Scikit-learn在处理百万级甚至千万级患者记录时,往往耗时过长,成为医疗科研和临床决策的瓶颈。本文将深入探讨如何利用RAPIDS生态系统中的cuDF(GPU加速的Pandas) 和cuML(GPU加速的Scikit-learn) 来高效处理大规模临床数据集。通过完整的代码示例和性能对比,展示GPU加速如何将数据处理和机器学习训练时间从数小时缩短到数分钟,为临床研究人员提供切