Clickhouse 为什么快

ClickHouse是一个用于联机分析处理(OLAP)的开源列式数据库管理系统(DBMS)。它之所以能提供出色的查询性能和处理速度,主要归功于以下几个方面的设计和优化:

列式存储

ClickHouse存储数据按列而不是按行组织。这种存储方式对于分析查询非常有效,因为它可以快速读取用于计算的特定列,而不必加载整个行的数据,这对于处理大量数据和复杂查询时尤其有益。

数据压缩

ClickHouse对列数据进行高效的压缩。由于列中的数据通常类型相同或者相似,因此可以更有效地压缩。压缩减少了磁盘空间的需求,同时也提升了读取速度,因为从磁盘读取的数据量减少了。

向量化查询执行

ClickHouse执行查询时,会采用向量化的方法,这意味着在处理数据时,每次操作可以处理数据列的一部分而不是单个值。这种处理方式使得CPU能够更有效地利用现代处理器的SIMD(单指令多数据)指令集。

优化的数据结构

ClickHouse为各种查询场景设计了高效的索引和数据结构(如MergeTree引擎),这些数据结构支持快速的数据插入和查询,特别是对于时间序列数据的聚合和查询。

并行处理

ClickHouse能够将查询分解成多个部分并行执行,充分利用多核CPU的能力。此外,它还可以在多个服务器节点上分布式地执行查询,进一步提高处理速度。

高度定制化的系统设置

ClickHouse提供了大量的配置选项,以便管理员可以根据具体的硬件和场景调整DBMS的行为,使之最优化。

预先计算的视图和物化视图

ClickHouse支持创建物化视图,这些视图可以在数据插入时自动更新,因此可以快速返回预先计算的结果。

数据分区和分片

在ClickHouse集群中,数据可以根据某个键自动分区和分片,这样可以在查询时只访问包含所需数据的分区和分片,减少不必要的数据扫描。

实时性能

ClickHouse设计为实时分析系统,可以保证在连续插入的同时还能提供高性能查询。

这些特性共同作用,使得ClickHouse成为处理大规模数据分析的强有力工具。然而,实际性能也取决于具体的硬件配置、数据模型设计以及查询的复杂性。

相关推荐
·云扬·2 天前
ClickHouse核心引擎详解:库引擎与表引擎实践指南
clickhouse
孤独天狼6 天前
ClickHosue
clickhouse
不吃饭的猪8 天前
clickhouse-20版本安装部署
数据库·mysql·clickhouse
lhyzws8 天前
CENTOS上的网络安全工具(三十五)Portainer Kafka-Clickhouse部署 Flink安装部署与编程
clickhouse·flink·kafka
一瓢西湖水10 天前
列式数据库-以clickHouse为例
数据库·clickhouse
zhglhy10 天前
ClickHouse高性能技术解析
clickhouse
恒悦sunsite14 天前
clickhouse之clickhouse-client命令简介和使用
clickhouse·client·列式数据库·客户端命令·ctyunos
言之。16 天前
Python调用DeepSeek API查询ClickHouse
windows·python·clickhouse
zhglhy17 天前
ckman将单节点ClickHouse转为集群方案
clickhouse·ckman
葡萄月令with蒲公英18 天前
使用clickhouse_connect从csv导入数据到clickhouse报错
clickhouse