记.backward()报错

最近我在模型训练损失里加入了LPIPS深度感知损失,训练的时候就出现了如上的报错,具体解释为:调用梯度反向传播loss.backward()时,我们计算梯度,需要一个标量的loss(即该loss张量的维度为1,只包含一个元素);而LPIPS的输出的loss为一个[4,1,1,1]的4维张量(batch_size,c,h,w),因此报错。

修正:

python 复制代码
def lpips_loss(img1, img2):
    # loss_fn_alex = lpips.LPIPS(net='alex')  # best forward scores
    loss_fn_vgg = lpips.LPIPS(net='vgg')  # closer to "traditional" perceptual loss, when used for optimization
    loss_fn_vgg.cuda()
    loss = loss_fn_vgg.forward(img1, img2)
    loss = torch.mean(loss)
    return loss

参考:

grad can be implicitly created only for scalar outputs-CSDN博客https://blog.csdn.net/qq_39208832/article/details/117415229
lpips · PyPIhttps://pypi.org/project/lpips/

相关推荐
Boxsc_midnight3 小时前
【MCP服务器的配置和使用】Cherry Studio应用更多更好的MCP工具来完成更多工作
服务器·人工智能·windows
IALab-检测行业AI报告生成10 小时前
IACheck AI 报告审核助手:整体架构与详细结构说明
大数据·人工智能·架构·ai报告审核
码农杂谈000710 小时前
AI 原生企业内容管理:4 大转型策略,破解老软件 AI 升级难题
大数据·人工智能·内容中台·企业内容管理系统·内容生产·ai内容生产·生成式 ai 品牌力
rayufo11 小时前
包含思维链CoT的最小大模型
人工智能·chatgpt
麦麦大数据11 小时前
M003_中药可视化系统开发实践:知识图谱与AI智能问答的完美结合
人工智能·flask·llm·vue3·知识图谱·neo4j·ner
生成论实验室11 小时前
即事经:一种基于生成论的宇宙、生命与文明新范式
人工智能·科技·神经网络·算法·信息与通信
量子-Alex11 小时前
【大模型思维链】RAP中如何通过提示词将LLM改造为世界模型
人工智能·深度学习·机器学习
码农杂谈000712 小时前
企业人工智能:2026 避坑指南,告别工具摆设,实现 AI 价值变现
人工智能·百度
tuotali202612 小时前
氢气压缩机技术核心要点测评
大数据·人工智能
上进小菜猪12 小时前
基于 YOLOv8 的石头剪刀布手势识别系统工程实践 [目标检测完整源码]
深度学习