基于tensorflow CNN的花卉识别系统

项目介绍:

本项目是一个基于深度学习技术的花卉识别系统。用户可以上传一张花卉图片,系统通过使用卷积神经网络(CNN)模型,自动识别出该花卉的品种。系统采用 Python 编程语言和 TensorFlow 框架进行开发,前端界面使用 React 和 Ant Design 实现,后端使用 Flask 框架搭建 Web 服务。通过该系统,用户可以方便地获取花卉的品种信息,并可以对系统进行反馈和改进。

技术栈:

  • Python:作为主要编程语言,用于系统的后端开发和模型训练。
  • TensorFlow:作为深度学习框架,用于构建和训练卷积神经网络模型。
  • Flask:用于搭建后端 Web 服务,接收用户上传的花卉图片,并返回识别结果。
  • React:作为前端框架,用于构建用户友好的界面,实现图片上传和展示识别结果等功能。
  • Ant Design:作为 React 的 UI 组件库,提供美观且易于使用的界面组件。

技术架构:

  1. 数据集采集与预处理:从公开的花卉数据集中获取 17 个品种、1360 张花卉图片。对这些图片进行预处理,包括缩放、裁剪和归一化等操作,以满足 CNN 模型的输入要求。同时,使用数据增强技术生成更多的训练数据,提升模型的泛化能力。
  2. CNN 模型训练与优化:使用 TensorFlow 框架搭建基于 VGGNet 的 CNN 模型。通过微调和优化,将 VGGNet 的全连接层替换为适合花卉识别任务的新输出层,并固定前几层的权重,只更新后几层的权重。使用 Adam 优化算法进行模型参数更新,并根据验证集上的准确率和损失函数来调整超参数和训练策略,提高模型性能和泛化能力。
  3. Web 服务开发:使用 Flask 框架搭建后端 Web 服务,接收用户上传的花卉图片,并调用 CNN 模型进行图像分类。通过 API 将识别结果返回给前端界面,使用 React 和 Ant Design 实现用户友好的界面,包括图片上传和显示识别结果等功能。同时,实现用户反馈功能,以进一步优化系统性能。

系统流程:

  1. 用户上传花卉图片至前端界面。
  2. 前端界面将图片发送至后端 Web 服务。
  3. 后端 Web 服务接收图片并进行预处理。
  4. 调用 CNN 模型对预处理后的图片进行分类。
  5. 后端 Web 服务将识别结果返回给前端界面。
  6. 前端界面展示识别结果,并提供用户反馈功能。

截图

038 基于tensorflow CNN的花卉识别系统-设计展示

相关推荐
万粉变现经纪人28 分钟前
如何解决pip安装报错ModuleNotFoundError: No module named ‘cuml’问题
python·scrapy·beautifulsoup·pandas·ai编程·pip·scipy
IT学长编程31 分钟前
计算机毕业设计 基于Hadoop豆瓣电影数据可视化分析设计与实现 Python 大数据毕业设计 Hadoop毕业设计选题【附源码+文档报告+安装调试
大数据·hadoop·python·django·毕业设计·毕业论文·豆瓣电影数据可视化分析
java1234_小锋40 分钟前
Scikit-learn Python机器学习 - 分类算法 - K-近邻(KNN)算法
python·算法·机器学习
大翻哥哥1 小时前
Python上下文管理器进阶指南:不仅仅是with语句
前端·javascript·python
QiZhang | UESTC1 小时前
JAVA算法练习题day11
java·开发语言·python·算法·hot100
PyHaVolask1 小时前
Python进阶教程:随机数、正则表达式与异常处理
python·正则表达式·异常处理·随机数生成
折翼的恶魔2 小时前
数据分析:合并二
python·数据分析·pandas
三体世界4 小时前
测试用例全解析:从入门到精通(1)
linux·c语言·c++·python·功能测试·测试用例·测试覆盖率
Python私教4 小时前
Django全栈班v1.04 Python基础语法 20250912 下午
后端·python·django
xchenhao4 小时前
Scikit-Learn 对糖尿病数据集(回归任务)进行全面分析
python·机器学习·回归·数据集·scikit-learn·特征·svm