零基础学习数学建模——(一)什么是数学建模

本篇博客将详细介绍什么是数学建模。

文章目录

个人简介

​ 本人在本科阶段获得过国赛省一、mathorcup数学建模一等奖、五一杯数学建模一等奖、华数杯数学建模一等奖、亚太杯数学建模一等奖和两次美赛一等奖。自己在数学建模这条路上摸爬滚打了几年,现在想借助博客分享自己在数学建模上的一些经验,帮助小白更快地学习数学建模。

什么是数学建模

(一)引例:高中数学里的简单线性规划问题

​ 在了解什么是数学建模之前,我们先来复习一下高中数学里的简单线下规划问题。

​ 线性规划问题:求线性目标函数在线性约束条件下的最大值或最小值的问题,通常称为线性规划问题。

​ 我们来看2018年理科数学全国I卷的一道题目:

​ 一般而言,求解线性规划问题一共有四步:

1、列出线性约束条件,确定目标函数

2、画出可行域

3、在可行域中移动目标函数,找出最优解

4、求出最值

​ 针对这个题,约束条件和目标函数如下:

​ 根据约束条件画出可行域,具体如下图:

​ 蓝色部分即为可行域。

​ 在移动目标函数之前,现将目标函数化简成 y = k x + m z y=kx+mz y=kx+mz的形式,即 z = 3 x + 2 y z=3x+2y z=3x+2y换成 y = − 3 2 x + 1 2 z y=-\frac{3}{2}x+\frac{1}{2}z y=−23x+21z。已知题目中求 z z z的最大值,其实也就是求 y = − 3 2 x + 1 2 z y=-\frac{3}{2}x+\frac{1}{2}z y=−23x+21z这条直线在 y y y轴截距的最大值。

​ 接下来令 z = 0 z=0 z=0,画出 y = − 3 2 x y=-\frac{3}{2}x y=−23x的图像,如下图绿色系所示,可知当直线 y = − 3 2 x y=-\frac{3}{2}x y=−23x向右移动到(2,0)点时与y轴截距最大,如下图粉色直线的位置,此时(2,0)即为最优解。

​ 因此, z m a x = 3 ∗ 2 + 2 ∗ 0 = 6 z_{max}=3*2+2*0=6 zmax=3∗2+2∗0=6。

​ 这道题到这里就做完了。介绍这道题的目的是让大家了解高中数学里的简单线性规划。下面再看一道高中数学里的简单线性规划的大题。

​ 某工厂生产甲、乙两种产品,每生产1吨产品需要的电力、煤、劳动力及产值,如下表所示:

品种 电力(千度) 煤(吨) 劳动力(人) 产值(千元)
4 3 5 7
6 6 3 9

​ 该厂的劳动力满员150人,根据限额每年用电不超过180千度,用煤每天不得超过150吨,问每天生成这两种产品各多少时,才能创造最大的经济效益。

​ 按照前面的讲解,首先设每天生产甲产品 x x x吨,乙产品 y y y吨,可得产值 z z z千元。因此,目标函数为: z = 7 x + 9 y z=7x+9y z=7x+9y。按照题目要求,设置约束条件如下:

​ 紧接着画出可行域,如下图所示:

​ 因为 y = − 7 9 x + 1 9 z y=-\frac{7}{9}x+\frac{1}{9}z y=−97x+91z,所以画出直线 y = − 7 9 x y=-\frac{7}{9}x y=−97x,并平移得到P点,此时 z z z最大。求出P点为( 150 7 \frac{150}{7} 7150, 100 7 \frac{100}{7} 7100),因此每天生产甲产品 150 7 \frac{150}{7} 7150吨,乙产品 100 7 \frac{100}{7} 7100吨。

如果能看懂这个例子,那么就可以称自己数学建模入门了。

数学建模的定义及用途

数学建模的定义

​ 为什么学到这就可以称自己数学建模入门了呢?我们先来看看数学建模的定义:

数学建模是指根据实际问题来建立数学模型,对数学模型进行求解,然后再根据结果解决实际问题。

​ 我们再回到上面那个应用题,题目本身就是实际问题,而我们建立的模型就是数学模型,根据这个模型我们得到了最终的结果,这难道不是数学建模吗?

​ 有数学建模基础的同学可能知道,上面这种题目就是数学建模里的优化问题,这部分将在后面的博客中详细讲解。

数学建模的用途

​ 在各个学科和行业中,数学建模都扮演着重要的角色,帮助解决复杂的实际问题。例如:

​ 1、环境科学:如预测天气、模拟气候变化、水资源管理等。

​ 2、计算机科学:如优化算法、图像识别等。

​ 3、交通运输:如交通流量预测、交通信号优化等。

​ 4、金融领域:如股票价格预测、风险管理等。

​ 5、医学:如疾病传播模型、药物效果评估等。

​ 6、社会科学:如研究人类行为、社会网络分析等。

​ 7、教育:如教学效果评估、排课问题等。

​ 8、市场营销:如广告效果评估、市场份额预测等。

正确认识数学建模

​ 数学模型一般是实际事物的一种数学简化。它常常是以某种意义上接近实际事物的抽象形式存在的,但它和真实的事物有着本质的区别,例如:

​ 1、为了进行数学分析,问题通常需要被简化,舍弃一些次要的、难以处理的细节,以便应用数学方法求解。 现实世界的问题通常更为复杂,包含许多不确定性、非线性关系和随机因素,这些在数学建模中可能被简化或省略。

​ 2、在数学建模中常常需要引入一些假设,以使问题变得更容易处理,同时也要考虑到数学模型的适用性。而实际问题通常受到各种现实约束,如资源限制、时间限制、技术可行性等,需要考虑多种因素。

​ 3、模型的准确性受到模型假设和简化的影响,有时候可能只是对实际问题的近似。

​ 本篇博客到此结束!

相关推荐
biter008828 分钟前
opencv(15) OpenCV背景减除器(Background Subtractors)学习
人工智能·opencv·学习
Code哈哈笑1 小时前
【Java 学习】深度剖析Java多态:从向上转型到向下转型,解锁动态绑定的奥秘,让代码更优雅灵活
java·开发语言·学习
QQ同步助手2 小时前
如何正确使用人工智能:开启智慧学习与创新之旅
人工智能·学习·百度
流浪的小新2 小时前
【AI】人工智能、LLM学习资源汇总
人工智能·学习
A懿轩A3 小时前
C/C++ 数据结构与算法【数组】 数组详细解析【日常学习,考研必备】带图+详细代码
c语言·数据结构·c++·学习·考研·算法·数组
南宫生11 小时前
力扣-图论-17【算法学习day.67】
java·学习·算法·leetcode·图论
sanguine__11 小时前
Web APIs学习 (操作DOM BOM)
学习
数据的世界0113 小时前
.NET开发人员学习书籍推荐
学习·.net
四口鲸鱼爱吃盐14 小时前
CVPR2024 | 通过集成渐近正态分布学习实现强可迁移对抗攻击
学习
OopspoO16 小时前
qcow2镜像大小压缩
学习·性能优化