yolov8 瑞芯微 RKNN 的 C++部署,部署工程难度小、模型推理速度快

之前写过两次yolov8目标检测部署,后续继续思考,针对部署还有优化空间,本示例的部署方式优化了部署难度,加快了模型推理速度(略微增加了后处理的时耗)。

特别说明:如有侵权告知删除,谢谢。

【完整代码】代码和模型

1、rknn模型准备

onnx转rknn模型这一步就不再赘述,请参考上一篇 【yolov8n 瑞芯微RKNN和地平线Horizon芯片仿真测试部署,部署工程难度小、模型推理速度快】 。上一篇提供了完整的模型和代码,如果仅仅是想验证模型,可以直接拿提供的rknn模型进行后续的步骤,本篇也是基于上一篇转好的rknn模型进行的,在rk3588芯片部署测试。

2、C++代码准备

本篇中的 C++ 代码基于瑞芯微官方提供的 rknpu2_1.3.0 进行的。官方提供的开源示例参考 ,提取码:rknn .

3、C++ 代码

模型和图片读取部分参考官方提供的示例,详细代码请参本实例对应的github仓库,代码和模型 。本实例提供的完整代码也就只包含两个.c文件,阅读起来没啥难度。

复制代码
## 4、编译运行
1)编译

```powershell
cd examples/rknn_yolov8_demo_dfl_open

bash build-linux_RK3588.sh

2)运行

powershell 复制代码
cd install/rknn_yolov8_demo_Linux

./rknn_yolov8_demo

注意:修改模型、测试图像、保存图像的路径,所在文件为 src 下main.cc文件。

5、板端效果

冒号":"前的数子是coco的80类对应的类别,后面的浮点数是目标得分。(类别:得分)

(注:图片来源coco128)

说明:推理测试预处理没有考虑等比率缩放,激活函数 SiLU 用 Relu 进行了替换。由于使用的是coco128的128张图片数据进行训练的,且迭代的次数不多,效果并不是很好,仅供测试流程用。换其他图片测试检测不到属于正常现象,最好选择coco128中的图像进行测试。

6、模型和后处理时耗

C++完整部署代码和模型示例参考

把板端C++代码的模型和时耗也给贴出来供大家参考,使用芯片rk3588。相对之前在rk3588上推理40ms,降到了17ms,后处理稍微有增加。

上一篇【yolov8 瑞芯微 RKNN 的 C++部署】部署到rknn3588上的C++时耗

本篇部署方法时耗

相关推荐
lmy201211082 分钟前
提高:图论:强连通分量 图的遍历
c++·算法·图论·强联通分量
green5+134 分钟前
LeetCode18四数之和
java·开发语言·算法
啊阿狸不会拉杆39 分钟前
第二十五章:Python-pyecharts 库实现 3D 地图绘制
开发语言·python·地图
满怀101540 分钟前
Python入门(8):文件
开发语言·python
pk_xz12345641 分钟前
完整的Python程序,它能够根据两个Excel表格(假设在同一个Excel文件的不同sheet中)中的历史数据来预测未来G列数字
开发语言·python·excel
Excuse_lighttime1 小时前
JAVA单例模式
java·开发语言·单例模式
冷琅辞1 小时前
Swift语言的跨平台开发
开发语言·后端·golang
独隅1 小时前
针对Ansible执行脚本时报错“可执行文件格式错误”,以下是详细的解决步骤和示例
运维·开发语言·ansible·lua·lua5.4
@hdd1 小时前
C++ | 文件读写(ofstream/ifstream/fstream)
c++·文件
敢敢のwings1 小时前
C++信号与槽机制自实现
开发语言·数据库·c++