QEMU源码全解析 —— PCI设备模拟(7)

接前一篇文章:

上一回讲解了pci_edu_realize函数中的pci_register_bar函数,本回开始对于edu设备的MMIO读写函数进行解析。

操作系统与PCI设备交互的主要方式是PIO和MMIO。MMIO虽然是一段内存,但是其没有EPT映射,在虚拟机访问设备的MMIO时,会产生VM Exit;KVM识别此MMIO访问并且将该访问分派到应用层QEMU中;QEMU根据内存虚拟化的步骤进行分派,找到设备注册的MMIO读写回调函数;设备的MMIO读写回调函数根据设备的功能进行模拟,完成模拟之后可能会发送中断到虚拟机中,从而完成一些MMIO访问。

前文书(QEMU源码全解析 ------ PCI设备模拟(5))已经讲过,pci_edu_realize函数中调用memory_region_init_io函数,指定其读写函数是edu_mmio_ops。

edu_mmio_ops在hw/misc/edu中初始化,代码如下:

cpp 复制代码
static const MemoryRegionOps edu_mmio_ops = {
    .read = edu_mmio_read,
    .write = edu_mmio_write,
    .endianness = DEVICE_NATIVE_ENDIAN,
    .valid = {
        .min_access_size = 4,
        .max_access_size = 8,
    },
    .impl = {
        .min_access_size = 4,
        .max_access_size = 8,
    },

};

edu_mmio_ops的类型为MemoryRegionOps,此结构在include/exec/memory.h中定义,代码如下:

cpp 复制代码
typedef struct MemoryRegionOps MemoryRegionOps;

而struct MemoryRegionOps的定义也在include/exec/memory.h中,如下:

cpp 复制代码
/*
 * Memory region callbacks
 */
struct MemoryRegionOps {
    /* Read from the memory region. @addr is relative to @mr; @size is
     * in bytes. */
    uint64_t (*read)(void *opaque,
                     hwaddr addr,
                     unsigned size);
    /* Write to the memory region. @addr is relative to @mr; @size is
     * in bytes. */
    void (*write)(void *opaque,
                  hwaddr addr,
                  uint64_t data,
                  unsigned size);

    MemTxResult (*read_with_attrs)(void *opaque,
                                   hwaddr addr,
                                   uint64_t *data,
                                   unsigned size,
                                   MemTxAttrs attrs);
    MemTxResult (*write_with_attrs)(void *opaque,
                                    hwaddr addr,
                                    uint64_t data,
                                    unsigned size,
                                    MemTxAttrs attrs);

    enum device_endian endianness;
    /* Guest-visible constraints: */
    struct {
        /* If nonzero, specify bounds on access sizes beyond which a machine
         * check is thrown.
         */
        unsigned min_access_size;
        unsigned max_access_size;
        /* If true, unaligned accesses are supported.  Otherwise unaligned
         * accesses throw machine checks.
         */
         bool unaligned;
        /*
         * If present, and returns #false, the transaction is not accepted
         * by the device (and results in machine dependent behaviour such
         * as a machine check exception).
         */
        bool (*accepts)(void *opaque, hwaddr addr,
                        unsigned size, bool is_write,
                        MemTxAttrs attrs);
    } valid;
    /* Internal implementation constraints: */
    struct {
        /* If nonzero, specifies the minimum size implemented.  Smaller sizes
         * will be rounded upwards and a partial result will be returned.
         */
        unsigned min_access_size;
        /* If nonzero, specifies the maximum size implemented.  Larger sizes
         * will be done as a series of accesses with smaller sizes.
         */
        unsigned max_access_size;
        /* If true, unaligned accesses are supported.  Otherwise all accesses
         * are converted to (possibly multiple) naturally aligned accesses.
         */
        bool unaligned;
    } impl;
};

其中的read和Write函数分别表示该MMIO的读写回调;endianness表示字节的大小端模式。

以write回调函数为例,

cpp 复制代码
    /* Write to the memory region. @addr is relative to @mr; @size is
     * in bytes. */
    void (*write)(void *opaque,
                  hwaddr addr,
                  uint64_t data,
                  unsigned size);
cpp 复制代码
static void edu_mmio_write(void *opaque, hwaddr addr, uint64_t val,
                unsigned size)

其原型中的opaque表示的是设备的对象;addr表示虚拟机读的地址在该MMIO中的偏移地址;data(val)表示要写入的值;size表示写入值的大小,通常由单字节、双字节、四字节以及八字节。

edu_mmio_write函数同样在hw/misc/edu.c中,代码如下:

cpp 复制代码
static void edu_mmio_write(void *opaque, hwaddr addr, uint64_t val,
                unsigned size)
{
    EduState *edu = opaque;

    if (addr < 0x80 && size != 4) {
        return;
    }

    if (addr >= 0x80 && size != 4 && size != 8) {
        return;
    }

    switch (addr) {
    case 0x04:
        edu->addr4 = ~val;
        break;
    case 0x08:
        if (qatomic_read(&edu->status) & EDU_STATUS_COMPUTING) {
            break;
        }
        /* EDU_STATUS_COMPUTING cannot go 0->1 concurrently, because it is only
         * set in this function and it is under the iothread mutex.
         */
        qemu_mutex_lock(&edu->thr_mutex);
        edu->fact = val;
        qatomic_or(&edu->status, EDU_STATUS_COMPUTING);
        qemu_cond_signal(&edu->thr_cond);
        qemu_mutex_unlock(&edu->thr_mutex);
        break;
    case 0x20:
        if (val & EDU_STATUS_IRQFACT) {
            qatomic_or(&edu->status, EDU_STATUS_IRQFACT);
            /* Order check of the COMPUTING flag after setting IRQFACT.  */
            smp_mb__after_rmw();
        } else {
            qatomic_and(&edu->status, ~EDU_STATUS_IRQFACT);
        }
        break;
    case 0x60:
        edu_raise_irq(edu, val);
        break;
    case 0x64:
        edu_lower_irq(edu, val);
        break;
    case 0x80:
        dma_rw(edu, true, &val, &edu->dma.src, false);
        break;
    case 0x88:
        dma_rw(edu, true, &val, &edu->dma.dst, false);
        break;
    case 0x90:
        dma_rw(edu, true, &val, &edu->dma.cnt, false);
        break;
    case 0x98:
        if (!(val & EDU_DMA_RUN)) {
            break;
        }
        dma_rw(edu, true, &val, &edu->dma.cmd, true);
        break;
    }
}

edu_mmio_write函数展示了一个虚拟机在写设备MMIO地址时QEMU中设备模拟的典型行为。

(1)首先,需要检查读写地址以及大小是否在范围之内。代码片段如下:

cpp 复制代码
    if (addr < 0x80 && size != 4) {
        return;
    }

    if (addr >= 0x80 && size != 4 && size != 8) {
        return;
    }

(2)然后,根据具体的地址来进行适当的行为。

这些行为可以是简单地设置一个值,如这里的写0x04地址,代码片段如下:

cpp 复制代码
    case 0x04:
        edu->addr4 = ~val;
        break;

也可以是将中断设置为高电平(写0x60地址)或者设置为低电平(写0x64地址),代码片段如下:

cpp 复制代码
    case 0x60:
        edu_raise_irq(edu, val);
        break;
    case 0x64:
        edu_lower_irq(edu, val);
        break;

还可以是通过dma读写设备虚拟机的物理地址(写0x80地址),代码片段如下:

cpp 复制代码
    case 0x80:
        dma_rw(edu, true, &val, &edu->dma.src, false);
        break;

对于read回调函数,也是类似的机制。这里仅给出edu_mmio_read函数源码,在hw/misc/edu.c中,代码如下:

cpp 复制代码
static uint64_t edu_mmio_read(void *opaque, hwaddr addr, unsigned size)
{
    EduState *edu = opaque;
    uint64_t val = ~0ULL;

    if (addr < 0x80 && size != 4) {
        return val;
    }

    if (addr >= 0x80 && size != 4 && size != 8) {
        return val;
    }

    switch (addr) {
    case 0x00:
        val = 0x010000edu;
        break;
    case 0x04:
        val = edu->addr4;
        break;
    case 0x08:
        qemu_mutex_lock(&edu->thr_mutex);
        val = edu->fact;
        qemu_mutex_unlock(&edu->thr_mutex);
        break;
    case 0x20:
        val = qatomic_read(&edu->status);
        break;
    case 0x24:
        val = edu->irq_status;
        break;
    case 0x80:
        dma_rw(edu, false, &val, &edu->dma.src, false);
        break;
    case 0x88:
        dma_rw(edu, false, &val, &edu->dma.dst, false);
        break;
    case 0x90:
        dma_rw(edu, false, &val, &edu->dma.cnt, false);
        break;
    case 0x98:
        dma_rw(edu, false, &val, &edu->dma.cmd, false);
        break;
    }

    return val;
}

欲知后事如何,且看下回分解。

相关推荐
团儿.9 天前
KVM磁盘配置:构建高效虚拟环境的基石
linux·运维·centos·kvm·kvm磁盘
ywang_wnlo17 天前
【Kenel】基于 QEMU 的 Linux 内核编译和安装
linux·qemu·kernel
ywang_wnlo21 天前
【Kernel】基于 QEMU 的 Linux 内核编译和安装
linux·qemu·kernel
小哈里1 个月前
【虚拟化】内核级虚拟化技术KVM介绍,全/半虚拟化的区别,使用libvirt搭建虚拟化平台(go/java/c++)
java·c++·golang·虚拟化·kvm
plmm烟酒僧1 个月前
qemu模拟arm64环境-构建6.1内核以及debian12
linux·debian·qemu·虚拟机·香橙派·aarch64
igcllq1 个月前
ubuntu 安装kvm 创建windos虚拟机
linux·运维·服务器·ubuntu·虚拟机·kvm
思禾2 个月前
Qemu开发ARM篇-3、qemu运行uboot演示
linux·arm开发·qemu·uboot
清瞳清2 个月前
KVM环境下制作ubuntu qcow2格式镜像
ubuntu·kvm·qcow2
张世争2 个月前
rtems 5.3 qemu realview_pbx_a9 环境搭建:生成 rtems arm 工具链
qemu·rtems·realview_pbx_a9
西京刀客2 个月前
kvm 虚拟机命令行虚拟机操作、制作快照和恢复快照以及工作常用总结
linux·服务器·kvm