【MongoDB使用Int型TImestamp记录时间数据有更快的排序速度】

MongoDB使用Int型TImestamp记录时间数据有更快的排序速度

  1. Talk is cheap, show you my code.
python 复制代码
import mongoengine
import datetime
import os
import random
from threading import Thread
from mongoengine import (
  StringField,
  IntField,
  DateTimeField,
  FloatField,
  Document
)
options = {'allowDiskUse': True}
MONGO_HOST = os.environ.get('MONGO_HOST')
if MONGO_HOST is None:
  MONGO_HOST = None

MONGO_USER = os.environ.get('MONGO_USER')
if MONGO_USER is None:
  MONGO_USER = None

MONGO_PASSWD = os.environ.get('MONGO_PASSWD')
if MONGO_PASSWD is None:
  MONGO_PASSWD = None

print(MONGO_HOST, MONGO_USER, MONGO_PASSWD) 
mongoengine.connect('testing_date', host=MONGO_HOST, port=27017, username=MONGO_USER, password=MONGO_PASSWD)

class DtData(Document):
  name = StringField()
  the_id = IntField()
  date = DateTimeField()

class TsDataFloat(Document):
  name = StringField()
  the_id = IntField()
  date = FloatField()

class TsDataInt(Document):
  name = StringField()
  the_id = IntField()
  date = IntField()
  
def random_str():
  """
  生成一个指定长度的随机字符串
  """
  randomlength=16
  random_str =''
  base_str ='ABCDEFGHIGKLMNOPQRSTUVWXYZabcdefghigklmnopqrstuvwxyz0123456789'
  length =len(base_str) -1
  for i in range(randomlength):
    random_str +=base_str[random.randint(0, length)]
  return random_str

def insert_dt():
  for i in range(100 * 10000):
    random_int = random.randint(1, 100000000)
    date = datetime.datetime.utcnow()
    new = DtData(name=random_str(), the_id=random_int, date=date)
    new.save()
    print("dt:",i)

def insert_tsf():
  for i in range(100 * 10000):
    random_int = random.randint(1, 100000000)
    date = datetime.datetime.utcnow().timestamp()
    new = TsDataFloat(name=random_str(), the_id=random_int, date=date)
    new.save()
    print("tsf:",i)

def insert_tsi():
  for i in range(100 * 10000):
    random_int = random.randint(1, 100000000)
    date = int(datetime.datetime.utcnow().timestamp())
    new = TsDataInt(name=random_str(), the_id=random_int, date=date)
    new.save()
    print("tsi:",i)

def query_dt():
  pipeline = [
    {
      "$sort" : {
        "date" : -1 
      }
    }
  ]
  dt_start = datetime.datetime.utcnow()
  res_dt = DtData.objects.aggregate(pipeline, **options)
  dt_stop = datetime.datetime.utcnow()
  return (dt_stop - dt_start).total_seconds()

def query_tsf():
  pipeline = [
    {
      "$sort" : {
        "date" : -1  
      }
    }
  ]
  ts_start = datetime.datetime.utcnow()
  res_ts = TsDataFloat.objects.aggregate(pipeline, **options)
  ts_stop = datetime.datetime.utcnow()
  return (ts_stop - ts_start).total_seconds()

def query_tsi():
  pipeline = [
    {
      "$sort" : {
        "date" : -1  
      }
    }
  ]
  ts_start = datetime.datetime.utcnow()
  res_int_ts = TsDataInt.objects.aggregate(pipeline, **options)
  ts_stop = datetime.datetime.utcnow()
  return (ts_stop - ts_start).total_seconds()


option_input = input("c : [create]\nq : [query]\nOptions:")
if option_input == "c":
  task_dt = Thread(target=insert_dt)
  task_ts = Thread(target=insert_tsf)
  task_int_ts = Thread(target=insert_tsi)
  task_dt.start()
  task_ts.start()
  task_int_ts.start()
  
elif option_input == "q":
  times = 100
  dt_perf = []
  tsf_perf = []
  tsi_perf = []
  for i in range(times):
    print("time", i)
    dt_res = query_dt()
    tsf_res = query_tsf()
    tsi_res = query_tsi()
    dt_perf.append(dt_res)
    tsf_perf.append(tsf_res)
    tsi_perf.append(tsi_res)

  # 平均表现
  dt_avg = sum(dt_perf) / len(dt_perf)
  tsf_avg = sum(tsf_perf) / len(tsf_perf)
  tsi_avg = sum(tsi_perf) / len(tsi_perf)
  
  # 标准差
  dt_std = (sum([(i - dt_avg) ** 2 for i in dt_perf]) / len(dt_perf)) ** 0.5
  tsf_std = (sum([(i - tsf_avg) ** 2 for i in tsf_perf]) / len(tsf_perf)) ** 0.5
  tsi_std = (sum([(i - tsi_avg) ** 2 for i in tsi_perf]) / len(tsi_perf)) ** 0.5
  
  # 方差
  dt_var = dt_std ** 2
  tsf_var = tsf_std ** 2
  tsi_var = tsi_std ** 2
  
  # 协方差
  dt_cov = sum([(dt_perf[i] - dt_avg) * (tsf_perf[i] - tsf_avg) for i in range(len(dt_perf))]) / len(dt_perf)
  tsf_cov = sum([(tsf_perf[i] - tsf_avg) * (tsi_perf[i] - tsi_avg) for i in range(len(tsf_perf))]) / len(tsf_perf)
  tsi_cov = sum([(tsi_perf[i] - tsi_avg) * (dt_perf[i] - dt_avg) for i in range(len(tsi_perf))]) / len(tsi_perf)
  
  # 最坏表现 worst 10
  dt_worst = sorted(dt_perf, reverse=True)[:10]
  tsf_worst = sorted(tsf_perf, reverse=True)[:10]
  tsi_worst = sorted(tsi_perf, reverse=True)[:10]
  
  # 最好表现 best 10
  dt_best = sorted(dt_perf)[:10]
  tsf_best = sorted(tsf_perf)[:10]
  tsi_best = sorted(tsi_perf)[:10]
  
  print("----------平均值------------")
  print("datetime:", dt_avg)
  print("ts float:", tsf_avg)
  print("ts int  :", tsi_avg)
  print("-----------方差-----------")
  print("datetime:", dt_var)
  print("ts float:", tsf_var)
  print("ts int  :", tsi_var)
  print("-----------协方差-----------")
  print("datetime:", dt_cov)
  print("ts float:", tsf_cov)
  print("ts int  :", tsi_cov)
  print("||||||||||||||||||||||")
  print("||||||||||||||||||||||")
  print("----------最坏情况------------")
  print("datetime:", dt_worst)
  print("ts float:", tsf_worst)
  print("ts int  :", tsi_worst)
  print("----------最好情况------------")
  print("datetime:", dt_best)
  print("ts float:", tsf_best)
  print("ts int  :", tsi_best)
  1. 我得到的结果:
shell 复制代码
----------平均值------------
datetime: 0.49624905000000014
ts float: 0.50869789
ts int  : 0.38799239
-----------方差-----------
datetime: 0.0001654481014074999
ts float: 0.0001566129328779001
ts int  : 0.0001354024412778999
-----------协方差-----------
datetime: 4.3927028885500086e-05
ts float: 4.275914065290002e-05
ts int  : 4.900592647049995e-05
||||||||||||||||||||||
||||||||||||||||||||||
----------最坏情况------------
datetime: [0.546375, 0.52904, 0.522622, 0.519766, 0.519098, 0.517002, 0.515263, 0.514543, 0.512385, 0.51231]
ts float: [0.534344, 0.532332, 0.530186, 0.530127, 0.529696, 0.528711, 0.527799, 0.527282, 0.526763, 0.526274]
ts int  : [0.427955, 0.416631, 0.41039, 0.406159, 0.405257, 0.405068, 0.404763, 0.404012, 0.403814, 0.402175]
----------最好情况------------
datetime: [0.477207, 0.477904, 0.47898, 0.479608, 0.479876, 0.479951, 0.480098, 0.480977, 0.481021, 0.481765]
ts float: [0.486213, 0.488016, 0.488476, 0.4894, 0.489478, 0.489946, 0.490292, 0.490379, 0.491225, 0.492103]
ts int  : [0.368757, 0.369022, 0.370764, 0.371021, 0.372055, 0.372325, 0.372414, 0.372813, 0.372818, 0.373015]
  • 可以看到的是Float类型的日期字段与Datetime的差距不大,但是Int型的日期字段具有大约22%的性能差距(在百万级数据量的基础上),Int型的TImestamp的精度在秒级,小数部分精度为毫秒。大部分场景下,用Int型的的日期字段会更有性能优势。
相关推荐
觅远6 分钟前
python+PyMuPDF库:(一)创建pdf文件及内容读取和写入
开发语言·python·pdf
MinIO官方账号41 分钟前
使用亚马逊针对 PyTorch 和 MinIO 的 S3 连接器实现可迭代式数据集
人工智能·pytorch·python
四口鲸鱼爱吃盐44 分钟前
Pytorch | 利用IE-FGSM针对CIFAR10上的ResNet分类器进行对抗攻击
人工智能·pytorch·python·深度学习·计算机视觉
四口鲸鱼爱吃盐1 小时前
Pytorch | 利用EMI-FGSM针对CIFAR10上的ResNet分类器进行对抗攻击
人工智能·pytorch·python
游客5201 小时前
自动化办公-合并多个excel
开发语言·python·自动化·excel
豌豆花下猫2 小时前
Python 潮流周刊#83:uv 的使用技巧(摘要)
后端·python·ai
凡人的AI工具箱2 小时前
每天40分玩转Django:Django部署概述
开发语言·数据库·后端·python·django
RacheV+TNY2642782 小时前
深度解析:电商平台API接口的安全挑战与应对策略
人工智能·python·自动化·api
卖个几把萌2 小时前
【10】Selenium+Python UI自动化测试 邮件发送测试报告(某积载系统实例-04)
python·selenium·ui
huhuhu15322 小时前
第P4周:猴痘病识别
图像处理·python·深度学习·cnn