PyTorch 不支持旧GPU的异常状态与解决方案:CUDNN_STATUS_NOT_SUPPORTED_ARCH_MISMATCH

问题

d:\anaconda3\envs***\lib\site-packages\torch\cuda_init _.py:262: UserWarning:
Found GPU0 GeForce GT 710 which is of cuda capability 3.5.
PyTorch no longer supports this GPU because it is too old.
The minimum cuda capability supported by this library is 3.7.

warnings.warn(

RuntimeError Traceback (most recent call last)

Cell In[3], line 906

(...)

--> 906 model = RnnNet().to(device)

907 # model = ResNet().to(device)

908 # model = SelfAttentionNet().to(device)

909 # model = TransformerNet().to(device)

(...)

RuntimeError: cuDNN error: CUDNN_STATUS_NOT_SUPPORTED_ARCH_MISMATCH
Output is truncated. View as a scrollable element or open in a text editor. Adjust cell output settings...

解决方案

你遇到的错误说明你的 GPU(NVIDIA GeForce GT 710, CUDA 3.5过旧不再被 PyTorch 支持。下面是详细解释与解决方案:


❌ 报错核心含义

text 复制代码
UserWarning:
Found GPU0 GeForce GT 710 which is of cuda capability 3.5.
PyTorch no longer supports this GPU because it is too old.
The minimum cuda capability supported by this library is 3.7.

并最终导致:

text 复制代码
RuntimeError: cuDNN error: CUDNN_STATUS_NOT_SUPPORTED_ARCH_MISMATCH

✅ 解决方案(推荐方案)

方法一:强制使用 CPU

因为你的 GPU 不再被支持,所以最直接的办法是切换到 CPU 运算,代码中这样写:

python 复制代码
device = torch.device("cpu")  # 强制使用 CPU

model = RnnNet().to(device)

并确保 所有张量也使用 CPU,例如:

python 复制代码
x = x.to(device)
y = y.to(device)

方法二:升级 GPU(如考虑 10 系列以上)

  • 推荐 CUDA Compute Capability ≥ 3.7 的 GPU,比如:
    • GTX 1050 / 1060 / 1660
    • RTX 系列
    • 或笔记本中的 MX450、RTX 2050 等
  • 当前你的 GT 710(CC 3.5)已停止支持,不能再用于当前 PyTorch 版本中的 GPU 运算。

方法三(不推荐):安装旧版 PyTorch

可尝试安装支持 CUDA 3.5 的旧版本 PyTorch,例如:

bash 复制代码
pip install torch==1.7.1+cu101 -f https://download.pytorch.org/whl/torch_stable.html

⚠️ 不推荐:旧版本可能兼容问题多、安全性差。


✅ 建议的代码示例(改为 CPU 模式)

python 复制代码
device = torch.device("cpu")

model = RnnNet().to(device)

# 推理/训练时,张量也应在 CPU 上
for batch_x, batch_y in train_loader:
    batch_x, batch_y = batch_x.to(device), batch_y.to(device)
    output = model(batch_x)

相关推荐
竣雄3 分钟前
计算机视觉:原理、技术与未来展望
人工智能·计算机视觉
救救孩子把14 分钟前
44-机器学习与大模型开发数学教程-4-6 大数定律与中心极限定理
人工智能·机器学习
Rabbit_QL26 分钟前
【LLM评价指标】从概率到直觉:理解语言模型的困惑度
人工智能·语言模型·自然语言处理
Wulida00999127 分钟前
建筑物表面缺陷检测与识别:基于YOLO11-C3k2-Strip模型的智能检测系统
python
呆萌很33 分钟前
HSV颜色空间过滤
人工智能
FJW02081442 分钟前
Python_work4
开发语言·python
roman_日积跬步-终至千里1 小时前
【人工智能导论】02-搜索-高级搜索策略探索篇:从约束满足到博弈搜索
java·前端·人工智能
FL16238631291 小时前
[C#][winform]基于yolov11的淡水鱼种类检测识别系统C#源码+onnx模型+评估指标曲线+精美GUI界面
人工智能·yolo·目标跟踪
爱笑的眼睛111 小时前
从 Seq2Seq 到 Transformer++:深度解构与自构建现代机器翻译核心组件
java·人工智能·python·ai
小润nature1 小时前
AI时代对编程技能学习方式的根本变化(1)
人工智能