PyTorch 不支持旧GPU的异常状态与解决方案:CUDNN_STATUS_NOT_SUPPORTED_ARCH_MISMATCH

问题

d:\anaconda3\envs***\lib\site-packages\torch\cuda_init _.py:262: UserWarning:
Found GPU0 GeForce GT 710 which is of cuda capability 3.5.
PyTorch no longer supports this GPU because it is too old.
The minimum cuda capability supported by this library is 3.7.

warnings.warn(

RuntimeError Traceback (most recent call last)

Cell In[3], line 906

(...)

--> 906 model = RnnNet().to(device)

907 # model = ResNet().to(device)

908 # model = SelfAttentionNet().to(device)

909 # model = TransformerNet().to(device)

(...)

RuntimeError: cuDNN error: CUDNN_STATUS_NOT_SUPPORTED_ARCH_MISMATCH
Output is truncated. View as a scrollable element or open in a text editor. Adjust cell output settings...

解决方案

你遇到的错误说明你的 GPU(NVIDIA GeForce GT 710, CUDA 3.5过旧不再被 PyTorch 支持。下面是详细解释与解决方案:


❌ 报错核心含义

text 复制代码
UserWarning:
Found GPU0 GeForce GT 710 which is of cuda capability 3.5.
PyTorch no longer supports this GPU because it is too old.
The minimum cuda capability supported by this library is 3.7.

并最终导致:

text 复制代码
RuntimeError: cuDNN error: CUDNN_STATUS_NOT_SUPPORTED_ARCH_MISMATCH

✅ 解决方案(推荐方案)

方法一:强制使用 CPU

因为你的 GPU 不再被支持,所以最直接的办法是切换到 CPU 运算,代码中这样写:

python 复制代码
device = torch.device("cpu")  # 强制使用 CPU

model = RnnNet().to(device)

并确保 所有张量也使用 CPU,例如:

python 复制代码
x = x.to(device)
y = y.to(device)

方法二:升级 GPU(如考虑 10 系列以上)

  • 推荐 CUDA Compute Capability ≥ 3.7 的 GPU,比如:
    • GTX 1050 / 1060 / 1660
    • RTX 系列
    • 或笔记本中的 MX450、RTX 2050 等
  • 当前你的 GT 710(CC 3.5)已停止支持,不能再用于当前 PyTorch 版本中的 GPU 运算。

方法三(不推荐):安装旧版 PyTorch

可尝试安装支持 CUDA 3.5 的旧版本 PyTorch,例如:

bash 复制代码
pip install torch==1.7.1+cu101 -f https://download.pytorch.org/whl/torch_stable.html

⚠️ 不推荐:旧版本可能兼容问题多、安全性差。


✅ 建议的代码示例(改为 CPU 模式)

python 复制代码
device = torch.device("cpu")

model = RnnNet().to(device)

# 推理/训练时,张量也应在 CPU 上
for batch_x, batch_y in train_loader:
    batch_x, batch_y = batch_x.to(device), batch_y.to(device)
    output = model(batch_x)

相关推荐
ζั͡山 ั͡有扶苏 ั͡✾16 小时前
从零搭建 Data-Juicer:一站式大模型数据预处理与可视化平台完整教程
python·data-juicer
说私域16 小时前
开源AI智能名片链动2+1模式S2B2C商城小程序FAQ设计及其意义探究
人工智能·小程序
SkylerHu17 小时前
tornado+gunicorn部署设置max_body_size
python·tornado·gunicorn
开利网络17 小时前
合规底线:健康产品营销的红线与避坑指南
大数据·前端·人工智能·云计算·1024程序员节
非著名架构师17 小时前
量化“天气风险”:金融与保险机构如何利用气候大数据实现精准定价与投资决策
大数据·人工智能·新能源风光提高精度·疾风气象大模型4.0
独行soc18 小时前
2025年渗透测试面试题总结-234(题目+回答)
网络·python·安全·web安全·渗透测试·1024程序员节·安全狮
木头左18 小时前
年化波动率匹配原则在ETF网格区间选择中的应用
python
清空mega18 小时前
从零开始搭建 flask 博客实验(3)
后端·python·flask
熙梦数字化18 小时前
2025汽车零部件行业数字化转型落地方案
大数据·人工智能·汽车
刘海东刘海东18 小时前
逻辑方程结构图语言的机器实现(草稿)
人工智能