PyTorch 不支持旧GPU的异常状态与解决方案:CUDNN_STATUS_NOT_SUPPORTED_ARCH_MISMATCH

问题

d:\anaconda3\envs***\lib\site-packages\torch\cuda_init _.py:262: UserWarning:
Found GPU0 GeForce GT 710 which is of cuda capability 3.5.
PyTorch no longer supports this GPU because it is too old.
The minimum cuda capability supported by this library is 3.7.

warnings.warn(

RuntimeError Traceback (most recent call last)

Cell In[3], line 906

(...)

--> 906 model = RnnNet().to(device)

907 # model = ResNet().to(device)

908 # model = SelfAttentionNet().to(device)

909 # model = TransformerNet().to(device)

(...)

RuntimeError: cuDNN error: CUDNN_STATUS_NOT_SUPPORTED_ARCH_MISMATCH
Output is truncated. View as a scrollable element or open in a text editor. Adjust cell output settings...

解决方案

你遇到的错误说明你的 GPU(NVIDIA GeForce GT 710, CUDA 3.5过旧不再被 PyTorch 支持。下面是详细解释与解决方案:


❌ 报错核心含义

text 复制代码
UserWarning:
Found GPU0 GeForce GT 710 which is of cuda capability 3.5.
PyTorch no longer supports this GPU because it is too old.
The minimum cuda capability supported by this library is 3.7.

并最终导致:

text 复制代码
RuntimeError: cuDNN error: CUDNN_STATUS_NOT_SUPPORTED_ARCH_MISMATCH

✅ 解决方案(推荐方案)

方法一:强制使用 CPU

因为你的 GPU 不再被支持,所以最直接的办法是切换到 CPU 运算,代码中这样写:

python 复制代码
device = torch.device("cpu")  # 强制使用 CPU

model = RnnNet().to(device)

并确保 所有张量也使用 CPU,例如:

python 复制代码
x = x.to(device)
y = y.to(device)

方法二:升级 GPU(如考虑 10 系列以上)

  • 推荐 CUDA Compute Capability ≥ 3.7 的 GPU,比如:
    • GTX 1050 / 1060 / 1660
    • RTX 系列
    • 或笔记本中的 MX450、RTX 2050 等
  • 当前你的 GT 710(CC 3.5)已停止支持,不能再用于当前 PyTorch 版本中的 GPU 运算。

方法三(不推荐):安装旧版 PyTorch

可尝试安装支持 CUDA 3.5 的旧版本 PyTorch,例如:

bash 复制代码
pip install torch==1.7.1+cu101 -f https://download.pytorch.org/whl/torch_stable.html

⚠️ 不推荐:旧版本可能兼容问题多、安全性差。


✅ 建议的代码示例(改为 CPU 模式)

python 复制代码
device = torch.device("cpu")

model = RnnNet().to(device)

# 推理/训练时,张量也应在 CPU 上
for batch_x, batch_y in train_loader:
    batch_x, batch_y = batch_x.to(device), batch_y.to(device)
    output = model(batch_x)

相关推荐
幻云201019 小时前
Next.js之道:从入门到精通
人工智能·python
0和1的舞者19 小时前
GUI自动化测试详解(三):测试框架pytest完全指南
自动化测试·python·测试开发·自动化·pytest·测试
予枫的编程笔记19 小时前
【Java集合】深入浅出 Java HashMap:从链表到红黑树的“进化”之路
java·开发语言·数据结构·人工智能·链表·哈希算法
llddycidy19 小时前
峰值需求预测中的机器学习:基础、趋势和见解(最新文献)
网络·人工智能·深度学习
larance19 小时前
机器学习的一些基本知识
人工智能·机器学习
l1t19 小时前
利用DeepSeek辅助拉取GitHub存储库目录跳过特定文件方法
人工智能·github·deepseek
大神君Bob19 小时前
【AI办公自动化】教你使用Pytho让Word文档处理自动化
python
123445219 小时前
Agent入门实战-一个题目生成Agent
人工智能·后端
IT_陈寒19 小时前
Java性能调优实战:5个被低估却提升30%效率的JVM参数
前端·人工智能·后端
taihexuelang19 小时前
大模型部署
人工智能·docker·容器