Pandas实战100例 | 案例 13: 数据分类 - 使用 `cut` 对数值进行分箱

案例 13: 数据分类 - 使用 cut 对数值进行分箱

知识点讲解

在数据分析中,将连续的数值数据分类成不同的区间(或"分箱")是一种常见的做法。Pandas 提供了 cut 函数,它可以根据你指定的分箱边界将数值数据分配到不同的类别中。

  • 使用 cut 进行分箱 : 你可以指定一系列的边界来定义分箱,然后将这些边界应用于数据列。cut 还允许你为每个箱指定标签。
示例代码
python 复制代码
# 准备数据和示例代码的运行结果,用于案例 13

# 示例数据
data_categorization = {
    'Product': ['Apple', 'Banana', 'Cherry', 'Date', 'Elderberry'],
    'Price': [5, 3, 9, 7, 1]
}
df_categorization = pd.DataFrame(data_categorization)

# 使用 cut 进行分箱
df_categorization['PriceRange'] = pd.cut(df_categorization['Price'], bins=[0, 2, 5, 10], labels=['Low', 'Medium', 'High'])

df_categorization

在这个示例中,我们对产品价格进行了分类。我们定义了三个价格区间:低(0-2)、中等(2-5)、高(5-10),并使用 cut 函数将每个产品的价格分配到这些区间中。

示例代码运行结果
复制代码
      Product  Price PriceRange
0       Apple      5     Medium
1      Banana      3     Medium
2      Cherry      9       High
3        Date      7       High
4  Elderberry      1        Low

这个结果展示了每个产品根据其价格被分配到的相应区间。这种方法对于分类分析和制作分组统计非常有用。

相关推荐
m***记7 小时前
Python 数据分析入门:Pandas vs NumPy 全方位对比
python·数据分析·pandas
小钱c713 小时前
Python使用 pandas操作Excel文件并新增列数据
python·excel·pandas
虎头金猫3 天前
我的远程开发革命:从环境配置噩梦到一键共享的蜕变
网络·python·网络协议·tcp/ip·beautifulsoup·负载均衡·pandas
悟乙己3 天前
PandasAI :使用 AI 优化你的分析工作流
人工智能·pandas·pandasai
weixin_456904275 天前
# Pandas 与 Spark 数据操作完整教程
大数据·spark·pandas
dlraba8026 天前
Pandas:机器学习数据处理的核心利器
人工智能·机器学习·pandas
猫头虎8 天前
如何查看局域网内IP冲突问题?如何查看局域网IP环绕问题?arp -a命令如何使用?
网络·python·网络协议·tcp/ip·开源·pandas·pip
peter67688 天前
pandas学习小结
学习·pandas
猫头虎9 天前
如何解决 pip install -r requirements.txt extras 语法 ‘package[extra’ 缺少 ‘]’ 解析失败问题
开发语言·python·开源·beautifulsoup·virtualenv·pandas·pip
MoRanzhi12039 天前
15. Pandas 综合实战案例(零售数据分析)
数据结构·python·数据挖掘·数据分析·pandas·matplotlib·零售