指数加权平均的偏差修正
\({{v}{t}}=\beta {{v}{t-1}}+(1-\beta ){{\theta }_{t}}\)
在上一个博客中,这个(红色)曲线对应\(\beta\)的值为0.9,这个(绿色)曲线对应的\(\beta\)=0.98,如果执行写在这里的公式,在\(\beta\)等于0.98的时候,得到的并不是绿色曲线,而是紫色曲线,可以注意到紫色曲线的起点较低,来看看怎么处理。
计算移动平均数的时候,初始化\(v_{0} = 0\),\(v_{1} = 0.98v_{0} +0.02\theta_{1}\),但是\(v_{0} =0\),所以这部分没有了(\(0.98v_{0}\)),所以\(v_{1} =0.02\theta_{1}\),所以如果一天温度是40华氏度,那么\(v_{1} = 0.02\theta_{1} =0.02 \times 40 = 8\),因此得到的值会小很多,所以第一天温度的估测不准。
\(v_{2} = 0.98v_{1} + 0.02\theta_{2}\),如果代入\(v_{1}\),然后相乘,所以\(v_{2}= 0.98 \times 0.02\theta_{1} + 0.02\theta_{2} = 0.0196\theta_{1} +0.02\theta_{2}\),假设\(\theta_{1}\)和\(\theta_{2}\)都是正数,计算后\(v_{2}\)要远小于\(\theta_{1}\)和\(\theta_{2}\),所以\(v_{2}\)不能很好估测出这一年前两天的温度。
有个办法可以修改这一估测,让估测变得更好,更准确,特别是在估测初期,也就是不用\(v_{t}\),而是用\(\frac{v_{t}}{1- \beta^{t}}\),t就是现在的天数。举个具体例子,当\(t=2\)时,\(1 - \beta^{t} = 1 - {0.98}^{2} = 0.0396\),因此对第二天温度的估测变成了\(\frac{v_{2}}{0.0396} =\frac{0.0196\theta_{1} + 0.02\theta_{2}}{0.0396}\),也就是\(\theta_{1}\)和\(\theta_{2}\)的加权平均数,并去除了偏差。会发现随着\(t\)增加,\(\beta^{t}\)接近于0,所以当\(t\)很大的时候,偏差修正几乎没有作用,因此当\(t\)较大的时候,紫线基本和绿线重合了。不过在开始学习阶段,才开始预测热身练习,偏差修正可以帮助更好预测温度,偏差修正可以帮助使结果从紫线变成绿线。
在机器学习中,在计算指数加权平均数的大部分时候,大家不在乎执行偏差修正,因为大部分人宁愿熬过初始时期,拿到具有偏差的估测,然后继续计算下去。如果关心初始时期的偏差,在刚开始计算指数加权移动平均数的时候,偏差修正能帮助在早期获取更好的估测。