github上的python图片转excel,pytesseract安装相关问题

问题1:明明都pip install pytesseract,但是就是安装不上

cpp 复制代码
pytesseract 未安装

链接: https://pan.baidu.com/s/1I4HzCgO4mITWTcZFkdil6g?pwd=afes 提取码: afes

安装后一路next,然后配置环境变量

cpp 复制代码
C:\Program Files\Tesseract-OCR

新建一个系统变量

问题2:程序如果报错信息:

cpp 复制代码
 Error opening data file D:\\Tesseract-OCR/tessdata/chi_sim.traineddata

通过如下路径下载模型:https://github.com/tesseract-ocr/tessdata/blob/main/chi_sim.traineddata

存储到tessdata目录下,再次运行,程序成功执行。

python图片转excel



我的运行效果不是太好,好像说要训练什么的,我在代码中加了一行避免报错

复制代码
    if len(item) >= 6:
脚本思路大致是:

使用OpenCV (cv2)读取图像文件。

将图像转换为灰度图,并应用自适应阈值处理,生成二值图像。

使用形态学运算识别表格的水平和垂直线。

检测线的交点,定位表格的单元格。

使用Tesseract OCR (pytesseract)从每个单元格提取文本。

清理提取的文本,去除特殊字符。

将提取的数据写入CSV文件。

cpp 复制代码
import os

import cv2
import numpy as np
import pytesseract
from PIL import Image
import csv
import re
import json


def parse_pic_to_excel_data(src):
    raw = cv2.imread(src, 1)
    # 灰度图片
    gray = cv2.cvtColor(raw, cv2.COLOR_BGR2GRAY)
    # 二值化
    binary = cv2.adaptiveThreshold(~gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 35, -5)
    cv2.imshow("binary_picture", binary)  # 展示图片
    rows, cols = binary.shape
    scale = 40
    # 自适应获取核值 识别横线
    kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (cols // scale, 1))
    eroded = cv2.erode(binary, kernel, iterations=1)

    dilated_col = cv2.dilate(eroded, kernel, iterations=1)
    cv2.imshow("excel_horizontal_line", dilated_col)
    # cv2.waitKey(0)
    # 识别竖线
    scale = 20
    kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (1, rows // scale))
    eroded = cv2.erode(binary, kernel, iterations=1)
    dilated_row = cv2.dilate(eroded, kernel, iterations=1)
    cv2.imshow("excel_vertical_line", dilated_row)
    # cv2.waitKey(0)
    # 标识交点
    bitwise_and = cv2.bitwise_and(dilated_col, dilated_row)
    cv2.imshow("excel_bitwise_and", bitwise_and)
    # cv2.waitKey(0)
    # 标识表格
    merge = cv2.add(dilated_col, dilated_row)
    cv2.imshow("entire_excel_contour", merge)
    # cv2.waitKey(0)
    # 两张图片进行减法运算,去掉表格框线
    merge2 = cv2.subtract(binary, merge)
    cv2.imshow("binary_sub_excel_rect", merge2)

    new_kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (2, 2))
    erode_image = cv2.morphologyEx(merge2, cv2.MORPH_OPEN, new_kernel)
    cv2.imshow('erode_image2', erode_image)
    merge3 = cv2.add(erode_image, bitwise_and)
    cv2.imshow('merge3', merge3)
    # cv2.waitKey(0)
    # 识别黑白图中的白色交叉点,将横纵坐标取出
    ys, xs = np.where(bitwise_and > 0)
    # 纵坐标
    y_point_arr = []
    # 横坐标
    x_point_arr = []
    # 通过排序,获取跳变的x和y的值,说明是交点,否则交点会有好多像素值值相近,我只取相近值的最后一点
    # 这个10的跳变不是固定的,根据不同的图片会有微调,基本上为单元格表格的高度(y坐标跳变)和长度(x坐标跳变)
    i = 0
    sort_x_point = np.sort(xs)
    for i in range(len(sort_x_point) - 1):
        if sort_x_point[i + 1] - sort_x_point[i] > 10:
            x_point_arr.append(sort_x_point[i])
        i = i + 1
    x_point_arr.append(sort_x_point[i])  # 要将最后一个点加入

    i = 0
    sort_y_point = np.sort(ys)
    # print(np.sort(ys))
    for i in range(len(sort_y_point) - 1):
        if (sort_y_point[i + 1] - sort_y_point[i] > 10):
            y_point_arr.append(sort_y_point[i])
        i = i + 1
    # 要将最后一个点加入
    y_point_arr.append(sort_y_point[i])
    print('y_point_arr', y_point_arr)
    print('x_point_arr', x_point_arr)
    # 循环y坐标,x坐标分割表格
    data = [[] for i in range(len(y_point_arr))]
    for i in range(len(y_point_arr) - 1):
        for j in range(len(x_point_arr) - 1):
            # 在分割时,第一个参数为y坐标,第二个参数为x坐标
            cell = raw[y_point_arr[i]:y_point_arr[i + 1], x_point_arr[j]:x_point_arr[j + 1]]
            cv2.imshow("sub_pic" + str(i) + str(j), cell)

            # 读取文字,此为默认英文
            # pytesseract.pytesseract.tesseract_cmd = 'E:/Tesseract-OCR/tesseract.exe'
            text1 = pytesseract.image_to_string(cell, lang="chi_sim")

            # 去除特殊字符
            text1 = re.findall(r'[^\*"/:?\\|<>″′‖ 〈\n]', text1, re.S)
            text1 = "".join(text1)
            print('单元格图片信息:' + text1)
            data[i].append(text1)
            j = j + 1
        i = i + 1
    # cv2.waitKey(0)
    return data


def write_csv(path, data):
    with open(path, "w", newline='') as csv_file:
        writer = csv.writer(csv_file, dialect='excel')
        for item in data:
            # Check if the item list has at least 6 elements before accessing them
            if len(item) >= 6:
                writer.writerow([item[0], item[1], item[2], item[3], item[4], item[5]])



if __name__ == '__main__':
    file = "classTable.png"
    # 解析数据
    data = parse_pic_to_excel_data(file)
    # 写入excel
    write_csv(file.replace(".png", ".csv"), data)

下面是原作者写的博客

https://blog.csdn.net/sc9018181134/article/details/104577247

相关推荐
B站_计算机毕业设计之家2 分钟前
豆瓣电影数据采集分析推荐系统 | Python Vue Flask框架 LSTM Echarts多技术融合开发 毕业设计源码 计算机
vue.js·python·机器学习·flask·echarts·lstm·推荐算法
渣渣苏10 分钟前
Langchain实战快速入门
人工智能·python·langchain
lili-felicity19 分钟前
CANN模型量化详解:从FP32到INT8的精度与性能平衡
人工智能·python
数据知道22 分钟前
PostgreSQL实战:详解如何用Python优雅地从PG中存取处理JSON
python·postgresql·json
ZH154558913134 分钟前
Flutter for OpenHarmony Python学习助手实战:面向对象编程实战的实现
python·学习·flutter
玄同76535 分钟前
SQLite + LLM:大模型应用落地的轻量级数据存储方案
jvm·数据库·人工智能·python·语言模型·sqlite·知识图谱
User_芊芊君子40 分钟前
CANN010:PyASC Python编程接口—简化AI算子开发的Python框架
开发语言·人工智能·python
白日做梦Q1 小时前
Anchor-free检测器全解析:CenterNet vs FCOS
python·深度学习·神经网络·目标检测·机器学习
喵手1 小时前
Python爬虫实战:公共自行车站点智能采集系统 - 从零构建生产级爬虫的完整实战(附CSV导出 + SQLite持久化存储)!
爬虫·python·爬虫实战·零基础python爬虫教学·采集公共自行车站点·公共自行车站点智能采集系统·采集公共自行车站点导出csv
喵手1 小时前
Python爬虫实战:地图 POI + 行政区反查实战 - 商圈热力数据准备完整方案(附CSV导出 + SQLite持久化存储)!
爬虫·python·爬虫实战·零基础python爬虫教学·地区poi·行政区反查·商圈热力数据采集