github上的python图片转excel,pytesseract安装相关问题

问题1:明明都pip install pytesseract,但是就是安装不上

cpp 复制代码
pytesseract 未安装

链接: https://pan.baidu.com/s/1I4HzCgO4mITWTcZFkdil6g?pwd=afes 提取码: afes

安装后一路next,然后配置环境变量

cpp 复制代码
C:\Program Files\Tesseract-OCR

新建一个系统变量

问题2:程序如果报错信息:

cpp 复制代码
 Error opening data file D:\\Tesseract-OCR/tessdata/chi_sim.traineddata

通过如下路径下载模型:https://github.com/tesseract-ocr/tessdata/blob/main/chi_sim.traineddata

存储到tessdata目录下,再次运行,程序成功执行。

python图片转excel



我的运行效果不是太好,好像说要训练什么的,我在代码中加了一行避免报错

复制代码
    if len(item) >= 6:
脚本思路大致是:

使用OpenCV (cv2)读取图像文件。

将图像转换为灰度图,并应用自适应阈值处理,生成二值图像。

使用形态学运算识别表格的水平和垂直线。

检测线的交点,定位表格的单元格。

使用Tesseract OCR (pytesseract)从每个单元格提取文本。

清理提取的文本,去除特殊字符。

将提取的数据写入CSV文件。

cpp 复制代码
import os

import cv2
import numpy as np
import pytesseract
from PIL import Image
import csv
import re
import json


def parse_pic_to_excel_data(src):
    raw = cv2.imread(src, 1)
    # 灰度图片
    gray = cv2.cvtColor(raw, cv2.COLOR_BGR2GRAY)
    # 二值化
    binary = cv2.adaptiveThreshold(~gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 35, -5)
    cv2.imshow("binary_picture", binary)  # 展示图片
    rows, cols = binary.shape
    scale = 40
    # 自适应获取核值 识别横线
    kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (cols // scale, 1))
    eroded = cv2.erode(binary, kernel, iterations=1)

    dilated_col = cv2.dilate(eroded, kernel, iterations=1)
    cv2.imshow("excel_horizontal_line", dilated_col)
    # cv2.waitKey(0)
    # 识别竖线
    scale = 20
    kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (1, rows // scale))
    eroded = cv2.erode(binary, kernel, iterations=1)
    dilated_row = cv2.dilate(eroded, kernel, iterations=1)
    cv2.imshow("excel_vertical_line", dilated_row)
    # cv2.waitKey(0)
    # 标识交点
    bitwise_and = cv2.bitwise_and(dilated_col, dilated_row)
    cv2.imshow("excel_bitwise_and", bitwise_and)
    # cv2.waitKey(0)
    # 标识表格
    merge = cv2.add(dilated_col, dilated_row)
    cv2.imshow("entire_excel_contour", merge)
    # cv2.waitKey(0)
    # 两张图片进行减法运算,去掉表格框线
    merge2 = cv2.subtract(binary, merge)
    cv2.imshow("binary_sub_excel_rect", merge2)

    new_kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (2, 2))
    erode_image = cv2.morphologyEx(merge2, cv2.MORPH_OPEN, new_kernel)
    cv2.imshow('erode_image2', erode_image)
    merge3 = cv2.add(erode_image, bitwise_and)
    cv2.imshow('merge3', merge3)
    # cv2.waitKey(0)
    # 识别黑白图中的白色交叉点,将横纵坐标取出
    ys, xs = np.where(bitwise_and > 0)
    # 纵坐标
    y_point_arr = []
    # 横坐标
    x_point_arr = []
    # 通过排序,获取跳变的x和y的值,说明是交点,否则交点会有好多像素值值相近,我只取相近值的最后一点
    # 这个10的跳变不是固定的,根据不同的图片会有微调,基本上为单元格表格的高度(y坐标跳变)和长度(x坐标跳变)
    i = 0
    sort_x_point = np.sort(xs)
    for i in range(len(sort_x_point) - 1):
        if sort_x_point[i + 1] - sort_x_point[i] > 10:
            x_point_arr.append(sort_x_point[i])
        i = i + 1
    x_point_arr.append(sort_x_point[i])  # 要将最后一个点加入

    i = 0
    sort_y_point = np.sort(ys)
    # print(np.sort(ys))
    for i in range(len(sort_y_point) - 1):
        if (sort_y_point[i + 1] - sort_y_point[i] > 10):
            y_point_arr.append(sort_y_point[i])
        i = i + 1
    # 要将最后一个点加入
    y_point_arr.append(sort_y_point[i])
    print('y_point_arr', y_point_arr)
    print('x_point_arr', x_point_arr)
    # 循环y坐标,x坐标分割表格
    data = [[] for i in range(len(y_point_arr))]
    for i in range(len(y_point_arr) - 1):
        for j in range(len(x_point_arr) - 1):
            # 在分割时,第一个参数为y坐标,第二个参数为x坐标
            cell = raw[y_point_arr[i]:y_point_arr[i + 1], x_point_arr[j]:x_point_arr[j + 1]]
            cv2.imshow("sub_pic" + str(i) + str(j), cell)

            # 读取文字,此为默认英文
            # pytesseract.pytesseract.tesseract_cmd = 'E:/Tesseract-OCR/tesseract.exe'
            text1 = pytesseract.image_to_string(cell, lang="chi_sim")

            # 去除特殊字符
            text1 = re.findall(r'[^\*"/:?\\|<>″′‖ 〈\n]', text1, re.S)
            text1 = "".join(text1)
            print('单元格图片信息:' + text1)
            data[i].append(text1)
            j = j + 1
        i = i + 1
    # cv2.waitKey(0)
    return data


def write_csv(path, data):
    with open(path, "w", newline='') as csv_file:
        writer = csv.writer(csv_file, dialect='excel')
        for item in data:
            # Check if the item list has at least 6 elements before accessing them
            if len(item) >= 6:
                writer.writerow([item[0], item[1], item[2], item[3], item[4], item[5]])



if __name__ == '__main__':
    file = "classTable.png"
    # 解析数据
    data = parse_pic_to_excel_data(file)
    # 写入excel
    write_csv(file.replace(".png", ".csv"), data)

下面是原作者写的博客

https://blog.csdn.net/sc9018181134/article/details/104577247

相关推荐
看海天一色听风起雨落22 分钟前
Python学习之装饰器
开发语言·python·学习
程序视点28 分钟前
GitHub Copilot代码审查大升级!路径级指令+组织级规范,开发者效率再提升!
github·github copilot
XiaoMu_0011 小时前
基于Python+Streamlit的旅游数据分析与预测系统:从数据可视化到机器学习预测的完整实现
python·信息可视化·旅游
THMAIL1 小时前
深度学习从入门到精通 - 生成对抗网络(GAN)实战:创造逼真图像的魔法艺术
人工智能·python·深度学习·神经网络·机器学习·生成对抗网络·cnn
我没想到原来他们都是一堆坏人2 小时前
(未完待续...)如何编写一个用于构建python web项目镜像的dockerfile文件
java·前端·python
总有刁民想爱朕ha3 小时前
车牌模拟生成器:Python3.8+Opencv代码实现与商业应用前景(C#、python 开发包SDK)
开发语言·python·数据挖掘
人衣aoa4 小时前
Python编程基础(八) | 类
开发语言·python
大模型真好玩4 小时前
深入浅出LangGraph AI Agent智能体开发教程(四)—LangGraph全生态开发工具使用与智能体部署
人工智能·python·mcp
百锦再4 小时前
脚本语言的大浪淘沙或百花争艳
java·开发语言·人工智能·python·django·virtualenv·pygame
掘技术4 小时前
十个 Python 案例分享
python