transbigdata 笔记: 官方文档示例3:车辆轨迹数据处理

1 读取数据+ 轨迹数据质量分析

这一部分和

transbigdata笔记:data_summary 轨迹数据质量/采样间隔分析-CSDN博客 的举例是一样的

python 复制代码
import pandas as pd
import geopandas as gpd
import transbigdata as tbd


data = pd.read_csv('Downloads/TaxiData-Sample.csv', 
                   names=['VehicleNum', 'Time', 'Lng', 'Lat', 'OpenStatus', 'Speed'])
data
python 复制代码
data['Time'] = pd.to_datetime(data['Time'])
data
python 复制代码
tbd.data_summary(data,
                 col=['VehicleNum','Time'],
                show_sample_duration=True)

2 清除冗余点

这一个函数的详细用法可见:transbigdata笔记:数据预处理-CSDN博客

python 复制代码
data=tbd.traj_clean_redundant(data,col=['VehicleNum','Time','Lng','Lat'])
data

3 清理不在研究区域的记录

transbigdata 笔记:官方文档案例1(出租车GPS数据处理)-CSDN博客 和这边的是一样的

python 复制代码
sz = gpd.read_file('Downloads/sz.json')
sz.plot();
python 复制代码
data=tbd.clean_outofshape(data,sz,col=['Lng','Lat'],accuracy=500)
data

4 清理研究区域内的轨迹漂移

transbigdata笔记:清理研究区域内的轨迹漂移-CSDN博客

python 复制代码
data=tbd.traj_clean_drift(data,
                         col=['VehicleNum','Time','Lng','Lat'])
data

5 轨迹停止点和行程提取

transbigdata笔记:轨迹停止点和行程提取-CSDN博客

python 复制代码
stay,move=tbd.traj_stay_move(data,
                            params,
                            col=['VehicleNum','Time','Lng','Lat'])
stay

停留状态开始时间、对应栅格编号、停留状态结束时间、轨迹所在位置、持续时间


move

开始栅格、开始位置、结束位置、结束栅格

6 轨迹切片

transbigdata笔记:轨迹切片-CSDN博客

python 复制代码
stay_points=tbd.traj_slice(data,
                          stay,
                          traj_col=['VehicleNum','Time'],
                          slice_col=['VehicleNum','stime', 'etime', 'stayid'])
stay_points
python 复制代码
move_points=tbd.traj_slice(data,
                          move,
                          traj_col=['VehicleNum','Time'],
                          slice_col=['VehicleNum','stime', 'etime', 'moveid'])
move_points

7 轨迹密集化

transbigdata 笔记: 轨迹密集化/稀疏化 & 轨迹平滑-CSDN博客

python 复制代码
move_points_d2=tbd.traj_densify(move_points,
                              col=['moveid','Time','Lng','Lat'],
                              timegap=29)

每timegap秒有一个记录,用pandas的interpolate(method为index)实现

原来采样频率不是timegap的倍数,怎么办呢

python 复制代码
move_points_d[move_points_d['moveid']==0.0].head(30)

通过结果(包括源码)可以发现,从move_points的最早的时刻开始,每timegap时刻就会有一条记录,和原先的记录一并存在【换句话说,至多每隔timegap秒都有一个轨迹点】

8 轨迹 稀疏化

transbigdata 笔记: 轨迹密集化/稀疏化 & 轨迹平滑-CSDN博客

python 复制代码
move_points_s=tbd.traj_sparsify(move_points,
                               col=['moveid','Time','Lng','Lat'],
                               timegap=30,
                               method='subsample')

如果method是subsample,那么选取[t,t+subsample)这个时间段内第一次出现的记录,丢弃其他记录,如果某一个[t,t+subsample)时间段内没有数据,不用补值

如果method是interpolate的,那么就是从最开始的位置开始,每subsample秒 用pandas的interpolate方法插一个值,舍弃所有不在整subsample秒的原始记录

9 轨迹平滑

transbigdata 笔记: 轨迹密集化/稀疏化 & 轨迹平滑-CSDN博客

python 复制代码
move_points_smooth=tbd.traj_smooth(move_points,
                                col=['VehicleNum','Time','Lng','Lat'],
                                process_noise_std=0.1,
                                measurement_noise_std=0.1)
相关推荐
于顾而言2 小时前
【笔记】Comprehensive Rust语言学习
笔记·学习·rust
芥子沫2 小时前
Docker安装思源笔记&使用指南
笔记·docker·容器·思源笔记
递归不收敛3 小时前
三、检索增强生成(RAG)技术体系
人工智能·笔记·自然语言处理
im_AMBER3 小时前
React 06
前端·javascript·笔记·学习·react.js·前端框架
autism_cx4 小时前
TCP/IP协议栈
服务器·网络·笔记·网络协议·tcp/ip·ios·osi
报错小能手4 小时前
C++笔记(面向对象)对于对象返回方式的讲解
笔记
Olrookie4 小时前
StreamX部署详细步骤
大数据·笔记·flink
报错小能手4 小时前
项目——基于C/S架构的预约系统平台(3)
linux·开发语言·笔记·学习·架构·1024程序员节
AAA阿giao5 小时前
JavaScript 中的变量声明:var、let 与 const 深度解析
javascript·笔记
W.Y.B.G5 小时前
css3 学习笔记
笔记·学习·css3·1024程序员节