Python文本向量化入门(四):中文词袋问题

在文本分析和自然语言处理中,将中文文本转换为数值型格式是一个重要的步骤。这有助于我们利用机器学习算法进行高效的数据分析。因为之前的学习中发现Scikit-learn的CountVectorizer不支持中文分词,所以在本篇文章中,我们将介绍如何使用jieba分词和Scikit-learn的CountVectorizer进行中文文本的特征提取。

首先,我们需要导入所需的库和模块:

python 复制代码
import jieba  
from sklearn.feature_extraction.text import CountVectorizer

接下来,我们定义了一些中文文本数据:

python 复制代码
documents = [  
    '这是第一个文档。',  
    '这是第二个文档。',  
    '这是第三个文档。第三个文档有很多词,但有些词是重复的。'  
]

然后,我们使用jieba分词对文本进行预处理,将其切分成单独的词或词素:

python 复制代码
documents = [' '.join(jieba.cut(doc)) for doc in documents]

接下来,我们创建一个CountVectorizer对象,用于将文本数据转换为词频矩阵:

python 复制代码
vectorizer = CountVectorizer()

使用fit_transform方法将分词结果转换为词频矩阵:

python 复制代码
vectorized_data = vectorizer.fit_transform(documents)

现在,我们可以打印词频矩阵的数组表示形式,以查看矩阵的内容:

python 复制代码
print(vectorized_data.toarray())

最后,我们可以使用get_feature_names方法输出默认的词袋(词汇表):

python 复制代码
print(vectorizer.get_feature_names())

输出效果:

python 复制代码
[[0 1 0 1 0 0 0 1 0]
 [0 1 0 0 0 1 0 1 0]
 [1 2 1 0 2 0 1 1 1]]
['很多', '文档', '有些', '第一个', '第三个', '第二个', '词是', '这是', '重复']

不使用结巴分词效果

python 复制代码
[[0 0 1 0 0]
 [0 0 0 0 1]
 [1 1 0 1 0]]
['但有些词是重复的', '第三个文档有很多词', '这是第一个文档', '这是第三个文档', '这是第二个文档']

所以对比一看,中文分词后效果会好很多。这样对比起来准确度应该会更好,更符合我们人的逻辑。

完整代码如下:

python 复制代码
import jieba
from sklearn.feature_extraction.text import CountVectorizer

# 定义文本数据
documents = [
    '这是第一个文档。',
    '这是第二个文档。',
    '这是第三个文档。第三个文档有很多词,但有些词是重复的。',
]

# 使用jieba分词对文本进行预处理
documents = [' '.join(jieba.cut(doc)) for doc in documents]

# 创建CountVectorizer对象
vectorizer = CountVectorizer()

# 将分词结果转换为词频矩阵
vectorized_data = vectorizer.fit_transform(documents)

# 输出词频矩阵
print(vectorized_data.toarray())

# 输出默认的词袋(词汇表)
print(vectorizer.get_feature_names())
相关推荐
youcans_36 分钟前
2025年数学建模美赛 A题分析(4)楼梯使用人数模型
python·数学建模
半个番茄2 小时前
C 或 C++ 中用于表示常量的后缀:1ULL
c语言·开发语言·c++
玉带湖水位记录员2 小时前
状态模式——C++实现
开发语言·c++·状态模式
查理零世3 小时前
【算法】数论基础——约数个数定理、约数和定理 python
python·算法·数论
Eiceblue4 小时前
Python 合并 Excel 单元格
开发语言·vscode·python·pycharm·excel
SomeB1oody5 小时前
【Rust自学】15.2. Deref trait Pt.1:什么是Deref、解引用运算符*与实现Deref trait
开发语言·后端·rust
情深不寿3175 小时前
C++----STL(list)
开发语言·c++
SomeB1oody6 小时前
【Rust自学】15.4. Drop trait:告别手动清理,释放即安全
开发语言·后端·rust
liruiqiang056 小时前
DDD-全面理解领域驱动设计中的各种“域”
开发语言·架构
前端熊猫6 小时前
JavaScript 的 Promise 对象和 Promise.all 方法的使用
开发语言·前端·javascript