flink多数据类型从Kafka同步到动态HDFS目录

上文中只是处理了JSON数据,参考:juejin.cn/post/732131... 实际使用场景常见的数据除了json之外还有csv等,期望flink程序可以适配这两种数据类型,分别按照事件时间将数据写入到文件系统中。

程序

核心还是实现BucketAssigner接口,这里我们将具体逻辑抽取放到类方法中实现,目的是为了可以正常调用并访问全局配置以及对象。

java 复制代码
.withBucketAssigner(new BucketAssigner<String, String>() {
    @Override
    public String getBucketId(String s, Context context) {
        String bucketId;  //? 定义bucketId变量
        String customBucketId = null;
        try {
        // 获取自定义的bucketId
            customBucketId = kafka2FileSys.getCustomBucketId(s);
        } catch (Exception e) {
            throw new RuntimeException(e);
        }
        //? 构造bucketId并返回
        bucketId = "dtime=" + customBucketId;
        return bucketId;
    }

    @Override
    public SimpleVersionedSerializer<String> getSerializer() {
        return SimpleVersionedStringSerializer.INSTANCE;
    }
})

具体的类方法如下:

java 复制代码
public String getCustomBucketId(String value) throws Exception {
    String dtime;
    // 从配置文件中读取数据类型以及其他配置
    String dataType = getConfigValue("datatype");  // json or text
    String dtField = getConfigValue("datetimefield");  // json datetime field
    int dtIndex = Integer.parseInt(getConfigValue("datetimefieldindex"));  // text datetime index
    String dataPatter = getConfigValue("datapatter");  // text sign
    if(dataType.equalsIgnoreCase("JSON")){
        JSONObject jsonObject = JSON.parseObject(value);
        dtime = jsonObject.getString(dtField);
    } else if (dataType.equalsIgnoreCase("TEXT")) {
        String[] valueList = value.split(dataPatter);
        dtime = valueList[dtIndex];
    }else{
        return null;
    }
    // 解析日期时间数据
    String dtFormat = getConfigValue("datetimeformat");
    DatetimeTool dtTool = new DatetimeTool(dtime, dtFormat);
    return dtTool.getDate("yyyyMMdd");
}

如果是json数据,则从一级的key中获取对应的日期时间数据;如果是csv(按照分隔符分割的文本数据)的话,从配置中加载日期时间的索引以及分隔符,然后进行解析。 然后按照对应的日期时间格式进行解析返回yyyyMMdd的日期时间字符串。 BucketAssigner接口再做前缀的拼接,例如添加dtime=的前缀,组成dtime=20230101的格式。

主要的核心代码就是上述的内容了。这个需求只是做同步,可用于同步到数仓的ODS层。具体的数据处理以及清洗的逻辑没有实现多数据类型的清洗逻辑比较麻烦,可以对各业务的数据情况以及数据类型、格式等做抽象,封装数据解析处理类,在map或者flatmap等算子中创建数据处理解析类实现解析的逻辑,也可以实现自定义的抽象接口等。 其他的工具类就不废话了。

github

GitHub地址:github.com/saberbin/Ka...

gitee地址:gitee.com/saberbin/Ka...

(因为GitHub没法正常访问,所以GitHub目前仓库是空的,gitee有完整的项目代码。)readme文档没有写,因为GitHub无法正常访问,写了也是白写。后面心情好了会写readme,push到GitHub,gitee不会再更新了[种植]。 gitee姑且是设置开源了,不知是否可以正常访问。 最后,快过年了,新春快乐。

相关推荐
ChMao9 分钟前
java解析word中的excel
java
百锦再11 分钟前
第6章 结构体与方法
android·java·c++·python·rust·go
lang2015092813 分钟前
Maven 4:20年老工具的重生之路
java·maven
音符犹如代码15 分钟前
ArrayList常见面试题二
java·开发语言·面试·职场和发展
JanelSirry26 分钟前
Java + Spring Boot + Redis技术栈,在实际使用缓存时遇到 缓存击穿、缓存穿透、缓存雪崩
java·spring boot·缓存
岁岁岁平安32 分钟前
python MongoDB 基础
数据库·python·mongodb
NO.102442 分钟前
11.4八股
java·linux·数据库
天工无极42 分钟前
基于Spring AI实现法律咨询AI助手
java
乐悠小码1 小时前
Java设计模式精讲---01工厂方法模式
java·设计模式·工厂方法模式
cherry--1 小时前
集合(开发重点)
java·开发语言