[python]使用标准库logging实现多进程安全的日志模块

前言

原本应用的日志是全部输出到os的stdout,也就是控制台输出。因其它团队要求也要保留日志文件,便于他们用其他工具统一采集,另一方面还要保留控制台输出,便于出问题的时候自己直接看pod日志。具体需求如下:

  1. 日志支持同时控制台输出和文件输出
  2. 控制台的输出级别可以高点,比如WARNING,个人这边的实际情况是WARNING或ERROR就能判断大部分问题。日志文件的输出级别设置为INFO,如果控制台日志找不到问题,可以具体看日志文件的内容。
  3. 因为用到了多进程,所以写文件的时候要保证多进程安全,避免日志内容不会缺失。
  4. 日志文件可以设置自动分割,避免长时间不清理导致硬盘存储资源浪费。

因为不允许随便使用第三方包,所以只能用标准库的logging。一开始想的方法比较挫------对文件加锁,但改来改去发现根本不能给别人review。翻python官方文档的时候发现logging库有个QueueHandlerQueueListener,简单试了下感觉逻辑还算清楚,遂简单整理了下代码。

示例代码

目录结构如下,main.py是入口脚本,logs目录和app.log将有程序运行时自动生成,主要日志功能放在pkg/log.py文件中。pkg/__init__.py为空文件,仅用于标识为python包。

.
├── main.py
├── logs
│   └── app.log
└── pkg
    ├── __init__.py
    └── log.py

pkg/log.py内容如下,主要提供logger已经配置好的日志对象,该对象先将日志记录到QueueHandler,然后QueueListener从队列中取日志,并分别输出到控制台和日志文件中。close_log_queue()方法将在主进程结束时调用。

python 复制代码
import logging
from logging.handlers import TimedRotatingFileHandler, QueueHandler, QueueListener
import sys
import os
# from queue import Queue
from multiprocessing import Queue

log_queue = Queue(-1)
queue_listener = ""


logdir = "logs"
logfile = f"{logdir}/app.log"
if not os.path.exists(logdir):
    os.makedirs(logdir, exist_ok=True)

def set_formatter():
    """设置日志格式化器"""
    fmt = "%(asctime)s | %(levelname)s | %(name)s | %(filename)s:%(lineno)d | %(funcName)s | %(message)s"
    datefmt = "%Y-%m-%d %H:%M:%S"
    return logging.Formatter(fmt, datefmt=datefmt)

def set_queue_handler():
    # 不要给QueueHandler重复设置formatter, 会引起重复嵌套
    handler = QueueHandler(log_queue)
    handler.setLevel(logging.INFO)
    return handler
def set_stream_handler(formatter: logging.Formatter):
    # 输出到控制台的日志处理器
    handler = logging.StreamHandler(sys.stdout)
    handler.setLevel(logging.WARNING)
    handler.setFormatter(formatter)
    return handler

def set_timed_rotating_file_handler(formatter: logging.Formatter):
    # 输出到文件的日志处理器, 每天生成一个新文件, 最多保留10个文件
    handler = TimedRotatingFileHandler(logfile, when="midnight", backupCount=10, encoding="utf-8")
    handler.setLevel(logging.INFO)
    handler.setFormatter(formatter)
    return handler

def close_log_queue():
    # 关闭队列监听器
    global queue_listener
    if queue_listener:
        queue_listener.stop()

def get_logger(name: str = "mylogger", level: int = logging.INFO):
    logger = logging.getLogger(name)
    logger.setLevel(level)

    formatter = set_formatter()

    stream_handler = set_stream_handler(formatter)
    file_handler = set_timed_rotating_file_handler(formatter)
    queue_handler = set_queue_handler()

    logger.addHandler(queue_handler)

    global queue_listener
    if not queue_listener:
        queue_listener = QueueListener(log_queue, stream_handler, file_handler, respect_handler_level=True)
        queue_listener.start()

    return logger


logger = get_logger()

if __name__ == "__main__":
    logger.info("test")
    close_log_queue()

main.py内容如下,主要是创建子进程调用logger,观察日志输出是否正常。

python 复制代码
from multiprocessing import Process
from pkg.log import logger, close_log_queue
import os

class MyProcess(Process):
    def __init__(self, delay):
        self.delay = delay
        super().__init__()

    def run(self):
        for i in range(self.delay):
            logger.info(f"pid: {os.getpid()}, {i}")

if __name__ == '__main__':
    logger.info(f"main process pid: {os.getpid()}")
    for i in range(10):
        p = MyProcess(10000)
        p.start()
        p.join()

    logger.info("main process end")
    close_log_queue()

执行输出大致如下所示:

$ tail logs/app.log 
2024-01-22 23:10:17 | INFO | mylogger | main.py:12 | run | pid: 7908, 1
2024-01-22 23:10:17 | INFO | mylogger | main.py:12 | run | pid: 7908, 2
2024-01-22 23:10:17 | INFO | mylogger | main.py:12 | run | pid: 7908, 3
2024-01-22 23:10:17 | INFO | mylogger | main.py:12 | run | pid: 7908, 4
2024-01-22 23:10:17 | INFO | mylogger | main.py:12 | run | pid: 7908, 5
2024-01-22 23:10:17 | INFO | mylogger | main.py:12 | run | pid: 7908, 6
2024-01-22 23:10:17 | INFO | mylogger | main.py:12 | run | pid: 7908, 7
2024-01-22 23:10:17 | INFO | mylogger | main.py:12 | run | pid: 7908, 8
2024-01-22 23:10:17 | INFO | mylogger | main.py:12 | run | pid: 7908, 9
2024-01-22 23:10:17 | INFO | mylogger | main.py:21 | <module> | main process end

补充

logging还内置很多其它handler,比如按文件大小自动切割,日志通过HTTP请求输出,日志输出到syslog等,可按照自己需求进行定制。

相关推荐
好看资源平台1 小时前
网络爬虫——综合实战项目:多平台房源信息采集与分析系统
爬虫·python
进击的六角龙1 小时前
深入浅出:使用Python调用API实现智能天气预报
开发语言·python
檀越剑指大厂1 小时前
【Python系列】浅析 Python 中的字典更新与应用场景
开发语言·python
湫ccc1 小时前
Python简介以及解释器安装(保姆级教学)
开发语言·python
孤独且没人爱的纸鹤1 小时前
【深度学习】:从人工神经网络的基础原理到循环神经网络的先进技术,跨越智能算法的关键发展阶段及其未来趋势,探索技术进步与应用挑战
人工智能·python·深度学习·机器学习·ai
羊小猪~~1 小时前
tensorflow案例7--数据增强与测试集, 训练集, 验证集的构建
人工智能·python·深度学习·机器学习·cnn·tensorflow·neo4j
lzhlizihang1 小时前
python如何使用spark操作hive
hive·python·spark
q0_0p1 小时前
牛客小白月赛105 (Python题解) A~E
python·牛客
极客代码1 小时前
【Python TensorFlow】进阶指南(续篇三)
开发语言·人工智能·python·深度学习·tensorflow
庞传奇2 小时前
TensorFlow 的基本概念和使用场景
人工智能·python·tensorflow