Python笔记10-数据可视化练习折线图

文章目录

JSON数据

JSON是一种轻量级的数据交互格式。可以按照JSON指定的格式去组织和封装数据 。本质上是一个带有特定格式的字符串

主要功能:可以在各个编程语言中流通,负责在不同编程语言中进行数据传递和交互.

JSON示例:

css 复制代码
# json数据的格式可以是: 
{"name":"admin","age":18} 
# 也可以是:  
[{"name":"admin","age":18},{"name":"root","age":16},{"name":"张三","age":20}] 

Python数据和Json数据的相互转化

css 复制代码
# 导入json模块 
import json 

# 准备符合格式json格式要求的python数据 
data = [{"name": "老王", "age": 16}, {"name": "张三", "age": 20}]
 
# 通过 json.dumps(data) 方法把python数据转化为了 json数据 
data = json.dumps(data) 

# 通过 json.loads(data) 方法把json数据转化为了 python数据 
data = json.loads(data)

pyecharts模块

Echarts 是个由百度开源的数据可视化,凭借着良好的交互性,精巧的图表设计,得到了众多开发者的认可. 而 Python 是门富有表达力的语言,很适合用于数据处理. 当数据分析遇上数据可视化时pyecharts 诞生了。
pyecharts安装

使用在前面学过的pip命令即可快速安装PyEcharts模块

pip install pyecharts

构建折线图

编写如下代码,并运行

css 复制代码
from pyecharts.charts import  Line
line =  Line()
line.add_xaxis(["中国","美国","英国"])
line.add_yaxis("GDP",[30,34,24])
line.render()

会看到源码目录下多了一个html文件

浏览器打开可以看到折线图

全局配置

全局配置选项可以通过set_global_opts方法来进行配置, 可以配置:

图表的标题、图例、鼠标移动效果、工具栏等整体配置项

css 复制代码
from pyecharts.charts import  Line
from pyecharts.options import TitleOpts, LegendOpts, ToolboxOpts, VisualMapOpts
line =  Line()
line.add_xaxis(["中国","美国","英国"])
line.add_yaxis("GDP",[30,34,24])

line.set_global_opts(
    title_opts=TitleOpts(title="GDP展示", pos_left="center", pos_bottom="1%"),
    legend_opts=LegendOpts(is_show=True),
    toolbox_opts=ToolboxOpts(is_show=True),
    visualmap_opts=VisualMapOpts(is_show=True),
)
line.render()

更具体的配置可以参考官网说明

绘制疫情数据折线图

准备三个数据文件,内容如下:

编写代码

css 复制代码
from pyecharts.charts import  Line
from pyecharts.options import LabelOpts, TitleOpts, LegendOpts, ToolboxOpts, VisualMapOpts
import json
# 获取文件内容
f_us = open("D:\\works\\pythonworks\\testpro\\美国.txt", "r", encoding="UTF-8")
us_data = f_us.read()   # 美国的全部内容
f_jp = open("D:\\works\\pythonworks\\testpro\\日本.txt", "r", encoding="UTF-8")
jp_data = f_jp.read()
f_in = open("D:\\works\\pythonworks\\testpro\\印度.txt", "r", encoding="UTF-8")
in_data = f_in.read()
# 替换开头的前缀字符串
us_data = us_data.replace("jsonp_1629344292311_69436(", "")
jp_data = jp_data.replace("jsonp_1629350871167_29498(", "")
in_data = in_data.replace("jsonp_1629350745930_63180(", "")

# 去掉不合JSON规范的结尾
us_data = us_data[:-2]
jp_data = jp_data[:-2]
in_data = in_data[:-2]

print(jp_data)
# JSON转Python字典
us_dict = json.loads(us_data)
jp_dict = json.loads(jp_data)
in_dict = json.loads(in_data)

# 获取trend key
us_trend_data = us_dict['data'][0]['trend']
jp_trend_data = jp_dict['data'][0]['trend']
in_trend_data = in_dict['data'][0]['trend']


# 获取日期数据,用于x轴,取2020年(到314下标结束)
us_x_data = us_trend_data['updateDate'][:314]
jp_x_data = jp_trend_data['updateDate'][:314]
in_x_data = in_trend_data['updateDate'][:314]

# 获取确认数据,用于y轴,取2020年(到314下标结束)
us_y_data = us_trend_data['list'][0]['data'][:314]
jp_y_data = jp_trend_data['list'][0]['data'][:314]
in_y_data = in_trend_data['list'][0]['data'][:314]



line =  Line()
line.add_xaxis(us_x_data)   # x轴是公用的,所以使用一个国家的数据即可
# 添加y轴数据
line.add_yaxis("美国确诊人数", us_y_data, label_opts=LabelOpts(is_show=False))     # 添加美国的y轴数据
line.add_yaxis("日本确诊人数", jp_y_data, label_opts=LabelOpts(is_show=False))     # 添加日本的y轴数据
line.add_yaxis("印度确诊人数", in_y_data, label_opts=LabelOpts(is_show=False))     # 添加印度的y轴数据

# 设置全局选项
line.set_global_opts(
    # 标题设置
    title_opts=TitleOpts(title="2020年美日印三国确诊人数对比折线图", pos_left="center", pos_bottom="1%")
)
line.render()
# 关闭文件对象
f_us.close()
f_jp.close()
f_in.close()

运行结果如下

相关推荐
蓝婷儿42 分钟前
6个月Python学习计划 Day 16 - 面向对象编程(OOP)基础
开发语言·python·学习
chao_7891 小时前
链表题解——两两交换链表中的节点【LeetCode】
数据结构·python·leetcode·链表
大霞上仙2 小时前
nonlocal 与global关键字
开发语言·python
Mark_Aussie2 小时前
Flask-SQLAlchemy使用小结
python·flask
程序员阿龙3 小时前
【精选】计算机毕业设计Python Flask海口天气数据分析可视化系统 气象数据采集处理 天气趋势图表展示 数据可视化平台源码+论文+PPT+讲解
python·flask·课程设计·数据可视化系统·天气数据分析·海口气象数据·pandas 数据处理
ZHOU_WUYI3 小时前
Flask与Celery 项目应用(shared_task使用)
后端·python·flask
且慢.5893 小时前
Python_day47
python·深度学习·计算机视觉
佩奇的技术笔记3 小时前
Python入门手册:异常处理
python
大写-凌祁3 小时前
论文阅读:HySCDG生成式数据处理流程
论文阅读·人工智能·笔记·python·机器学习
爱喝喜茶爱吃烤冷面的小黑黑4 小时前
小黑一层层削苹果皮式大模型应用探索:langchain中智能体思考和执行工具的demo
python·langchain·代理模式