YOLOv5中Ghostbottleneck结构shortcut=True和shortcut=False有什么区别

GhostBotleneck结构中的shodcut=True和shorcut=False的区别在干是否使用残差连接。当shorcu=True时,使用残差连接,可以以加速模型的收敛速度和提高模型的准确率,当shorcu=False时,不使用残差连接,可以减少模型的参数数量和计算量。

实际上不只是Ghostbottleneck具有残差连接,在C3、C2f等具有Bottleneck模块的结构均可根据此例举一反三。 相关问题

python 复制代码
init (self, in channels, out channels, stride, shortcut=True, if first=False, num seg=8, name=None)

这是一个类的初始化函数,它有以下参数:

  • in channels:输入特征图的通道数
  • out channels: 输出特征图的通道数。
  • stride: 卷积操作的步长。
  • shortcut. 是否使用短连接结构如果为 True,会在卷积层中添加短连接,以避免梯度消失和梯度爆炸的问题
  • if_first::是否是网络中的第一层。如果是第一层,会使用不同的初始化方式。
  • num_seg:残差块中分段卷积的分段数。
  • name:层的名称,用于区分不同的层

这个函数的作用是初始化一个残差块的参数。残差块是深度卷积神经网络中的一种基本模块,可以有效地解决梯度消失和梯度爆炸的问题。

相关推荐
FL16238631299 小时前
电力场景电力设备漏油检测数据集VOC+YOLO格式1114张36类别
人工智能·深度学习·yolo
stsdddd21 小时前
【YOLOv8杂草作物目标检测】
人工智能·yolo·目标检测
云端FFF1 天前
VS2015 + OpenCV + OnnxRuntime-Cpp + YOLOv8 部署
人工智能·opencv·yolo
old_power2 天前
Python基于YOLOv8和OpenCV实现车道线和车辆检测
python·opencv·yolo·计算机视觉
find_starshine2 天前
xml-dota-yolo数据集格式转换
xml·python·yolo
跑步去兜风2 天前
Yolov5预训练好的权重参数模型共享
人工智能·yolo·机器学习·yolov5·yolov5预训练模型权重·模型权重参数
来瓶霸王防脱发3 天前
【C#深度学习之路】如何使用C#实现Yolo5/8/11全尺寸模型的训练和推理
深度学习·yolo·机器学习·c#
大学生毕业题目3 天前
毕业项目推荐:基于yolov8/yolov5/yolo11的动物检测识别系统(python+卷积神经网络)
人工智能·python·深度学习·yolo·cnn·pyqt
前网易架构师-高司机3 天前
花生好坏缺陷识别数据集,7262张图片,支持yolo,coco json,pasical voc xml格式的标注,识别准确率在95.7%
xml·深度学习·yolo
红色的山茶花4 天前
YOLOv10-1.1部分代码阅读笔记-instance.py
笔记·深度学习·yolo