YOLOv5中Ghostbottleneck结构shortcut=True和shortcut=False有什么区别

GhostBotleneck结构中的shodcut=True和shorcut=False的区别在干是否使用残差连接。当shorcu=True时,使用残差连接,可以以加速模型的收敛速度和提高模型的准确率,当shorcu=False时,不使用残差连接,可以减少模型的参数数量和计算量。

实际上不只是Ghostbottleneck具有残差连接,在C3、C2f等具有Bottleneck模块的结构均可根据此例举一反三。 相关问题

python 复制代码
init (self, in channels, out channels, stride, shortcut=True, if first=False, num seg=8, name=None)

这是一个类的初始化函数,它有以下参数:

  • in channels:输入特征图的通道数
  • out channels: 输出特征图的通道数。
  • stride: 卷积操作的步长。
  • shortcut. 是否使用短连接结构如果为 True,会在卷积层中添加短连接,以避免梯度消失和梯度爆炸的问题
  • if_first::是否是网络中的第一层。如果是第一层,会使用不同的初始化方式。
  • num_seg:残差块中分段卷积的分段数。
  • name:层的名称,用于区分不同的层

这个函数的作用是初始化一个残差块的参数。残差块是深度卷积神经网络中的一种基本模块,可以有效地解决梯度消失和梯度爆炸的问题。

相关推荐
yolo大师兄4 小时前
【YOLO系列(V5-V12)通用数据集-火灾烟雾检测数据集】
人工智能·深度学习·yolo·目标检测·机器学习
贤小二AI1 天前
贤小二c#版Yolov5 yolov8 yolov10 yolov11自动标注工具 + 免python环境 GPU一键训练包
人工智能·深度学习·yolo
zy_destiny2 天前
【工业场景】用YOLOv12实现饮料类别识别
人工智能·python·深度学习·yolo·机器学习·计算机视觉·目标跟踪
卧式纯绿2 天前
每日文献(八)——Part one
人工智能·yolo·目标检测·计算机视觉·目标跟踪·cnn
HABuo2 天前
【YOLOv8】YOLOv8改进系列(12)----替换主干网络之StarNet
人工智能·深度学习·yolo·目标检测·计算机视觉
AdaCoding2 天前
YOLOv8架构详解
yolo·网络结构图
云卷云舒___________2 天前
【Ultralytics YOLO COCO 评估脚本 | 获得COCO评价指标】
yolo·coco·ultralytics
plmm烟酒僧4 天前
在 RK3588 多线程推理 YOLO 时,同时开启硬件解码和 RGA 加速的性能分析
yolo·rkmpp·瑞芯微·硬件加速·rga·色彩空间转换
HABuo4 天前
【YOLOv8】YOLOv8改进系列(11)----替换主干网络之MobileNetV4
人工智能·深度学习·yolo·目标检测·计算机视觉