YOLOv5中Ghostbottleneck结构shortcut=True和shortcut=False有什么区别

GhostBotleneck结构中的shodcut=True和shorcut=False的区别在干是否使用残差连接。当shorcu=True时,使用残差连接,可以以加速模型的收敛速度和提高模型的准确率,当shorcu=False时,不使用残差连接,可以减少模型的参数数量和计算量。

实际上不只是Ghostbottleneck具有残差连接,在C3、C2f等具有Bottleneck模块的结构均可根据此例举一反三。 相关问题

python 复制代码
init (self, in channels, out channels, stride, shortcut=True, if first=False, num seg=8, name=None)

这是一个类的初始化函数,它有以下参数:

  • in channels:输入特征图的通道数
  • out channels: 输出特征图的通道数。
  • stride: 卷积操作的步长。
  • shortcut. 是否使用短连接结构如果为 True,会在卷积层中添加短连接,以避免梯度消失和梯度爆炸的问题
  • if_first::是否是网络中的第一层。如果是第一层,会使用不同的初始化方式。
  • num_seg:残差块中分段卷积的分段数。
  • name:层的名称,用于区分不同的层

这个函数的作用是初始化一个残差块的参数。残差块是深度卷积神经网络中的一种基本模块,可以有效地解决梯度消失和梯度爆炸的问题。

相关推荐
Lun3866buzha2 小时前
【目标检测】厨房场景目标物检测与识别-YOLOv5改进版_HSPAN_DySample实战
yolo·目标检测·目标跟踪
ASF1231415sd12 小时前
【基于YOLOv10n-CSP-PTB的大豆花朵检测与识别系统详解】
人工智能·yolo·目标跟踪
AI小怪兽14 小时前
基于YOLOv13的汽车零件分割系统(Python源码+数据集+Pyside6界面)
开发语言·python·yolo·无人机
ASD125478acx17 小时前
多类型孢子与真菌的智能识别与分类系统YOLO模型优化方法
yolo·目标跟踪·分类
2501_936146041 天前
【计算机视觉系列】:基于YOLOv8-RepHGNetV2的鱿鱼目标检测模型优化与实现
yolo·目标检测·计算机视觉
羊羊小栈1 天前
基于YOLO和多模态大语言模型的智能电梯安全监控预警系统(vue+flask+AI算法)
人工智能·yolo·语言模型·毕业设计·创业创新·大作业
adaAS14143151 天前
【深度学习】YOLOv8-SOEP-RFPN-MFM实现太阳能电池板缺陷检测与分类_1
深度学习·yolo·分类
Coding茶水间1 天前
基于深度学习的驾驶行为检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
深度学习·qt·yolo
njsgcs1 天前
ppo靠近门模型 试训练 yolo评分
yolo·ppo
Dev7z2 天前
服装厂废料(边角料)YOLO格式分类检测数据集
yolo·服装厂废料·边角料