Kafka-消费者-KafkaConsumer分析总结

KafkaConsumer依赖SubscriptionState管理订阅的Topic集合和Partition的消费状态,通过ConsumerCoordinator与服务端的GroupCoordinator交互,完成Rebalance操作并请求最近提交的offset。

Fetcher负责从Kafka中拉取消息并进行解析,同时参与position的重置操作,提供获取指定Topic的集群元数据的操作。上述操作的所有请求都是通过ConsumerNetworkClient缓存并发送的,在ConsumerNetworkClient中还维护了定时任务队列,用来完成HearbeatTask任务和AutoCommitTask任务。NetworkClient在接收到上述请求的响应时会调用相应回调,最终交给其对应的*Handler以及RequestFuture的监听器进行处理。

KafkaConsumer并不是一个线程安全的类。为了防止多线程并发操作,KafkaConsumer提供了多线程并发的检测机制,涉及的方法是acquire和release。这两个方法的代码如下:


我们可以看出,这并不是一种锁的实现,仅实现了检测多线程并发操作的检测。这里使用CAS操作可以保证线程之间的可见性。CAS操作、可见性等相关概念请参考Java并发专栏

面我们来分析KafkaConsumer.poll方法进行消息消费的整个流程以及相关代码:

注意,在消费完消息之后,客户端还需要commit offset,手动同步commit offset使用commitSync(),手动异步commit offset使用commitAsync(),自动commit offset使用定时任务AutoCommitTask。

在pollOnce方法中会先通过ConsumerCoordinator与GroupCoordinator交互完成Rebalance操作,之后从GroupCoordinator获取最近一次提交的offset(或重置position),最后才是使用Fetcher,从Kafka获取消息进行消费。

相关推荐
熊文豪1 小时前
【前瞻创想】Kurator:站在巨人肩膀上的分布式云原生创新实践
分布式·云原生·kurator
问道飞鱼3 小时前
【分布式知识】Redis-Shake 容器云部署完整指南
redis·分布式·redis-shake
milanyangbo4 小时前
从硬盘I/O到网络传输:Kafka与RocketMQ读写模型及零拷贝技术深度对比
java·网络·分布式·架构·kafka·rocketmq
GEM的左耳返5 小时前
Java面试实战:从Spring Boot到AI集成的技术深度挑战
spring boot·redis·微服务·kafka·java面试·spring ai·缓存优化
写bug的小屁孩5 小时前
主流消息队列(MQ)和技术选型
kafka·java-rocketmq·java-rabbitmq
有梦想的攻城狮5 小时前
Rabbitmq在死信队列中的队头阻塞问题
分布式·rabbitmq·死信队列·延迟队列
Wang's Blog5 小时前
Elastic Stack梳理:深度解析Elasticsearch分布式查询机制与相关性算分优化实践
分布式·elasticsearch
bxlj_jcj5 小时前
分布式ID方案、雪花算法与时钟回拨问题
分布式·算法
java1234_小锋6 小时前
Kafka与RabbitMQ相比有什么优势?
分布式·kafka·rabbitmq
yumgpkpm6 小时前
腾讯TBDS和CMP(Cloud Data AI Platform,类Cloudera CDP,如华为鲲鹏 ARM 版)比较的缺陷在哪里?
hive·hadoop·elasticsearch·zookeeper·oracle·kafka·hbase