阿里巴巴开源联邦学习框架FederatedScope

5月5日,阿里巴巴达摩院发布新型联邦学习框架FederatedScope,声称可以在不共享训练数据的情况下开发机器学习算法,从而保护隐私。,其源代码现已在Apache 2.0许可下发布在GitHub上。

介绍

该平台被描述为一个全面的联邦学习框架,为学术界和工业界的各种机器学习任务提供灵活的定制。它还被声称易于掌握,允许用户集成自己的组件,包括特定应用程序的数据集和模型。

联邦学习,顾名思义,是一种跨多个分布式节点或主机训练模型的机器学习技术。每个节点使用本地训练数据,如果模型参数在节点之间共享,而不是原始数据,这意味着数据本身可以保持私有。

根据阿里巴巴的说法,由于潜在的隐私问题,收集训练数据来构建和进化机器学习模型越来越受到审查,而联邦学习可以帮助解决其中的一些问题

达摩院智能计算实验室隐私保护计算团队负责人丁博麟表示,"数据已成为重要的生产要素,而隐私保护计算是保障这一要素发挥作用的关键技术。通过开源最新联邦学习框架,我们希望促进隐私保护计算在研究和生产中的广泛应用,让医药研发、政务互通、人机交互等数据密集领域更安全、更顺畅地发展。"

流程图

特点

  • 该框架使用事件驱动的编程范式来构建联邦学习,即将联邦学习看成是参与方之间收发消息的过程,通过定义消息类型以及处理消息的行为来描述联邦学习过程。通过这一方式,FederatedScope实现了支持在丰富应用场景中进行大规模、高效率的联邦学习异步训练。

  • 为进一步适应不同应用场景,FederatedScope还集成了多种功能模块,包括自动调参、隐私保护、性能监控、端模型个性化等。FederatedScope支持开发者通过配置文件便捷地调用集成模块,方便快速入门;也允许通过注册的方式添加新的算法实现并调用,支持定制化及深度开发。

这些功能使开发人员能够针对计算机视觉、自然语言处理、语音识别、图形学习和推荐等领域构建和定制特定于任务的联邦学习应用程序。

隐私保护

FederatedScope还通过使用差分隐私和多方计算来满足不同的隐私保护需求,提供隐私保护。

Swarm Learning

阿里巴巴并不是唯一一家提供联合学习框架的公司。上个月,HPE推出了群学习(Swarm Learning),这是它自己针对边缘应用或分布式站点的去中心化机器学习框架。HPE的群学习是作为群学习库的一部分提供的,它是容器化的,可以在Docker、虚拟机或裸机上运行,并使用区块链技术来确保模型参数可以安全地交换

转载于:阿里巴巴开源联邦学习框架FederatedScope - 掘金 (juejin.cn)

相关推荐
n***85942 小时前
嵌入式 UI 开发的开源项目推荐
windows·开源·开源软件
sinovoip5 小时前
Banana Pi BPI-CanMV-K230D-Zero 采用嘉楠科技 K230D RISC-V芯片设计
人工智能·科技·物联网·开源·risc-v
OpenAnolis小助手5 小时前
开源生态发展合作倡议
开源·操作系统·龙蜥社区·龙蜥·openanolis
杭州奥能充电桩6 小时前
移动充储机器人“小奥”的多场景应用(上)
开源·能源
lsjweiyi1 天前
极简AI工具箱网站开源啦!
opencv·开源·微信支付·支付宝支付·百度ai·极简ai工具箱·ai图像处理
开源社1 天前
一场开源视角的AI会议即将在南京举办
人工智能·开源
FreeIPCC1 天前
谈一下开源生态对 AI人工智能大模型的促进作用
大数据·人工智能·机器人·开源
海害嗨1 天前
阿里巴巴官方「SpringCloudAlibaba全彩学习手册」限时开源!
学习·开源
生命是有光的1 天前
【开源风云】从若依系列脚手架汲取编程之道(八)
开源
HuggingFace1 天前
Halo 正式开源: 使用可穿戴设备进行开源健康追踪
开源·健康追踪