在 Python 开发中,很多时候我们希望每个应用有一个独立的 Python 环境(比如应用 1 需要用到 TensorFlow 1.X,而应用 2 使用 TensorFlow 2.0)。这时,Conda 虚拟环境即可为一个应用创建一套 "隔离" 的 Python 运行环境。使用 Python 的包管理器 conda 即可轻松地创建 Conda 虚拟环境。常用命令如下【1】:
python
conda create --name [env-name] # 建立名为[env-name]的Conda虚拟环境
conda activate [env-name] # 进入名为[env-name]的Conda虚拟环境
conda deactivate # 退出当前的Conda虚拟环境
conda env remove --name [env-name] # 删除名为[env-name]的Conda虚拟环境
conda env list # 列出所有Conda虚拟环境
conda list # 查看当前环境下安装的包
1)查看当前已经装好的python环境
python
conda info -e
2)查看当前所处的python版本
python
python -V
3)创建新的环境
python
conda create --name [env-name]
python
# 指定python版本为2.7,注意至少需要指定python版本或者要安装的包# 后一种情况下,自动安装最新python版本
conda create -n env_name python=2.7
# 同时安装必要的包
conda create -n env_name numpy matplotlib python=2.7
python
#创建一个名为python27的环境,指定Python版本是2.7(不用管是2.7.x,conda会为我们自动寻找2.7.x中的最新版本)
conda create --name python27 python=2.7
4)环境切换
python
# 切换到新环境# linux/Mac下需要使用source activate env_name
activate env_name
#退出环境,也可以使用`activate root`切回root环境
deactivate env_name
5)移除环境
python
conda remove -n env_name --all
6)在虚拟环境中安装所需要的包
python
pip install name
conda install name
参考:
【1】https://blog.csdn.net/weixin_43981229/article/details/108121457