数字地球开放平台农作物长势监测解决方案

数字地球开放平台农作物长势监测解决方案

利用遥感技术进行产量预测是一种高效而准确的方法,通过监测植被的生长状况、土地利用、气象等因素,可以为农业决策提供有力支持。数字地球开放平台拥有200+颗卫星,为您提供一站式卫星遥感服务。

农情监测_农作物识别_长势监测_产量预估_灾后定损-数字地球开放平台 (geovisearth.com)

数字地球开放平台将为您介绍一般遥感技术在农作物产量预测中的常使用的一些方法:

1.植被指数监测:

NDVI(归一化植被指数): 利用NDVI监测植被的健康程度,通过卫星或飞机遥感图像的获取,可以计算NDVI,从而了解植被覆盖的状况。植被茂盛通常与高产相关。


EVI(增强型植被指数): 类似于NDVI,EVI对大气影响更小,尤其在测算高植被覆盖区域的生长状态更为准确。

  1. 多光谱和高光谱遥感:

利用多波段的光学传感器获取植被的光谱信息,通过分析不同波段的反射率,可以更精确地了解植被的类型、生理状况和生长阶段。

  1. 热红外遥感:

植被在不同生长阶段有不同的热特性。通过测量植被的热辐射,可以了解植被的温度,进而推断植被的生长状况。

  1. 土壤湿度监测:

利用遥感技术监测土壤湿度,特别是微波遥感可以穿透云层和植被,提供全天候的土壤湿度信息。湿度状况直接关系到植物的水分供应,从而影响产量。

  1. 气象数据融合:

将遥感数据与气象数据融合,可以更全面地了解环境条件对植物生长的影响,包括温度、降水量等。

  1. 机器学习和人工智能:

利用机器学习算法,通过大量的历史遥感数据和实际产量数据进行训练,建立产量预测模型。这些模型可以逐渐学习和优化,提高预测的准确性。

  1. 时序遥感数据分析:

利用一系列时序遥感数据,观察植被的变化趋势,根据历史数据的演变推断未来植被生长状态,从而预测产量。

农情监测_农作物识别_长势监测_产量预估_灾后定损-数字地球开放平台 (geovisearth.com)

以上这些方法的综合应用,可以提供全面而及时的信息,帮助农业决策者更好地理解农田的状况,及时调整农业管理策略,最终提高农田的产量

相关推荐
羽凌寒38 分钟前
图像对比度调整(局域拉普拉斯滤波)
人工智能·计算机视觉
大模型铲屎官38 分钟前
【Python-Day 14】玩转Python字典(上篇):从零开始学习创建、访问与操作
开发语言·人工智能·pytorch·python·深度学习·大模型·字典
一点.点42 分钟前
计算机视觉的简单介绍
人工智能·深度学习·计算机视觉
量子-Alex44 分钟前
【目标检测】【Transformer】Swin Transformer
人工智能·目标检测·transformer
GISer_Jing44 分钟前
AI知识梳理——RAG、Agent、ReAct、LangChain、LangGraph、MCP、Function Calling、JSON-RPC
人工智能
Stara05112 小时前
基于多头自注意力机制(MHSA)增强的YOLOv11主干网络—面向高精度目标检测的结构创新与性能优化
人工智能·python·深度学习·神经网络·目标检测·计算机视觉·yolov11
YuSun_WK2 小时前
目标跟踪相关综述文章
人工智能·计算机视觉·目标跟踪
一切皆有可能!!2 小时前
RAG数据处理:PDF/HTML
人工智能·语言模型
kyle~2 小时前
深度学习---知识蒸馏(Knowledge Distillation, KD)
人工智能·深度学习
那雨倾城3 小时前
使用 OpenCV 将图像中标记特定颜色区域
人工智能·python·opencv·计算机视觉·视觉检测