数字地球开放平台农作物长势监测解决方案

数字地球开放平台农作物长势监测解决方案

利用遥感技术进行产量预测是一种高效而准确的方法,通过监测植被的生长状况、土地利用、气象等因素,可以为农业决策提供有力支持。数字地球开放平台拥有200+颗卫星,为您提供一站式卫星遥感服务。

农情监测_农作物识别_长势监测_产量预估_灾后定损-数字地球开放平台 (geovisearth.com)

数字地球开放平台将为您介绍一般遥感技术在农作物产量预测中的常使用的一些方法:

1.植被指数监测:

NDVI(归一化植被指数): 利用NDVI监测植被的健康程度,通过卫星或飞机遥感图像的获取,可以计算NDVI,从而了解植被覆盖的状况。植被茂盛通常与高产相关。


EVI(增强型植被指数): 类似于NDVI,EVI对大气影响更小,尤其在测算高植被覆盖区域的生长状态更为准确。

  1. 多光谱和高光谱遥感:

利用多波段的光学传感器获取植被的光谱信息,通过分析不同波段的反射率,可以更精确地了解植被的类型、生理状况和生长阶段。

  1. 热红外遥感:

植被在不同生长阶段有不同的热特性。通过测量植被的热辐射,可以了解植被的温度,进而推断植被的生长状况。

  1. 土壤湿度监测:

利用遥感技术监测土壤湿度,特别是微波遥感可以穿透云层和植被,提供全天候的土壤湿度信息。湿度状况直接关系到植物的水分供应,从而影响产量。

  1. 气象数据融合:

将遥感数据与气象数据融合,可以更全面地了解环境条件对植物生长的影响,包括温度、降水量等。

  1. 机器学习和人工智能:

利用机器学习算法,通过大量的历史遥感数据和实际产量数据进行训练,建立产量预测模型。这些模型可以逐渐学习和优化,提高预测的准确性。

  1. 时序遥感数据分析:

利用一系列时序遥感数据,观察植被的变化趋势,根据历史数据的演变推断未来植被生长状态,从而预测产量。

农情监测_农作物识别_长势监测_产量预估_灾后定损-数字地球开放平台 (geovisearth.com)

以上这些方法的综合应用,可以提供全面而及时的信息,帮助农业决策者更好地理解农田的状况,及时调整农业管理策略,最终提高农田的产量

相关推荐
昨日之日20061 小时前
Moonshine - 新型开源ASR(语音识别)模型,体积小,速度快,比OpenAI Whisper快五倍 本地一键整合包下载
人工智能·whisper·语音识别
浮生如梦_1 小时前
Halcon基于laws纹理特征的SVM分类
图像处理·人工智能·算法·支持向量机·计算机视觉·分类·视觉检测
深度学习lover1 小时前
<项目代码>YOLOv8 苹果腐烂识别<目标检测>
人工智能·python·yolo·目标检测·计算机视觉·苹果腐烂识别
热爱跑步的恒川2 小时前
【论文复现】基于图卷积网络的轻量化推荐模型
网络·人工智能·开源·aigc·ai编程
阡之尘埃4 小时前
Python数据分析案例61——信贷风控评分卡模型(A卡)(scorecardpy 全面解析)
人工智能·python·机器学习·数据分析·智能风控·信贷风控
孙同学要努力6 小时前
全连接神经网络案例——手写数字识别
人工智能·深度学习·神经网络
Eric.Lee20216 小时前
yolo v5 开源项目
人工智能·yolo·目标检测·计算机视觉
其实吧37 小时前
基于Matlab的图像融合研究设计
人工智能·计算机视觉·matlab
丕羽7 小时前
【Pytorch】基本语法
人工智能·pytorch·python
ctrey_7 小时前
2024-11-1 学习人工智能的Day20 openCV(2)
人工智能·opencv·学习