特征点匹配 harris

算法的核心是利用局部窗口在图像上进行移动,判断灰度是否发生较大的变化。如果窗口内的灰度值(在梯度图上)都有较大的变化,那么这个窗口所在区域就存在角点。

这样就可以将 Harris 角点检测算法分为以下三步:

  • 当窗口(局部区域)同时向 x (水平)和 y(垂直) 两个方向移动时,计算窗口内部的像素值变化量 E(x,y) ;
  • 对于每个窗口,都计算其对应的一个角点响应函数 R;
  • 然后对该函数进行阈值处理,如果 R>threshold,表示该窗口对应一个角点特征。

w(x,y)就是一个记录权重的卷积核 ,找到灰度变化最大的像素点

  • 左图表示一个平坦区域,在各方向移动,窗口内像素值均没有太大变化;
  • 中图表示一个边缘特征(Edges),如果沿着水平方向移动(梯度方向),像素值会发生跳变;如果沿着边缘移动(平行于边缘) ,像素值不会发生变化;
  • 右图表示一个角(Corners),不管你把它朝哪个方向移动,像素值都会发生很大变化。

边框意味着像素值发生突变,那么角附近的像素突变最大。

像素值发生很大变化 "这一现象可以用图像梯度进行描述。在图像局部内,图像梯度越大表示该局部内像素值变化越大(灰度的变化率越大)。 而图像的梯度在数学上可用微分或者导数 来表示。对于数字图像来说,相当于是二维离散函数求梯度,并使用差分来近似导数:Gx(x,y)=H(x+1,y)−H(x−1,y)Gy(x,y)=H(x,y+1)−H(x,y−1)在实际操作中,对图像求梯度通常是考虑图像的每个像素的某个邻域内的灰度变化,因此通常对原始图像中像素某个邻域设置梯度算子,然后采用小区域模板进行卷积来计算,常用的有Prewitt算子、Sobel算子、Robinson算子、Laplace算子等。

(之前刚好写过sobel算子。。。😊😊)

相关推荐
飞哥数智坊1 天前
GPT-5-Codex 发布,Codex 正在取代 Claude
人工智能·ai编程
倔强青铜三1 天前
苦练Python第46天:文件写入与上下文管理器
人工智能·python·面试
虫无涯1 天前
Dify Agent + AntV 实战:从 0 到 1 打造数据可视化解决方案
人工智能
Dm_dotnet1 天前
公益站Agent Router注册送200刀额度竟然是真的
人工智能
算家计算1 天前
7B参数拿下30个世界第一!Hunyuan-MT-7B本地部署教程:腾讯混元开源业界首个翻译集成模型
人工智能·开源
机器之心1 天前
LLM开源2.0大洗牌:60个出局,39个上桌,AI Coding疯魔,TensorFlow已死
人工智能·openai
Juchecar1 天前
交叉熵:深度学习中最常用的损失函数
人工智能
林木森ai1 天前
爆款AI动物运动会视频,用Coze(扣子)一键搞定全流程(附保姆级拆解)
人工智能·aigc
聚客AI1 天前
🙋‍♀️Transformer训练与推理全流程:从输入处理到输出生成
人工智能·算法·llm
BeerBear2 天前
【保姆级教程-从0开始开发MCP服务器】一、MCP学习压根没有你想象得那么难!.md
人工智能·mcp