[GDMEC-无人机遥感研究小组]无人机遥感小组-000-数据集制备

基于labelme的无人机语义分割数据集制备

文章目录

1. 数据获取

数据集制备需要利用无人机飞行并采集标注。使用录制模式,镜头垂直向下进行拍摄,得到DJI_XXXX.MP4文件,利用如下代码,可以按照如下代码得到对应的图片(注,本代码来自另一博主,非本人原创)

python 复制代码
import cv2
import os
#要提取视频的文件名,隐藏后缀
sourceFileName='DJI_0288'
#在这里把后缀接上
video_path = os.path.join("", "", sourceFileName+'.MP4')
times=0
#提取视频的频率,每25帧提取一个
frameFrequency=100
#输出图片到当前目录vedio文件夹下
outPutDirName=''+sourceFileName+'/'
if not os.path.exists(outPutDirName):
    #如果文件目录不存在则创建目录
    os.makedirs(outPutDirName) 
camera = cv2.VideoCapture(video_path)
while True:
    times+=1
    res, image = camera.read()
    if not res:
        print('not res , not image')
        break
    if times%frameFrequency==0:
        count = int(times/frameFrequency)
        cv2.imwrite(outPutDirName + str(count).zfill(6)+'.jpg', image)
        print(outPutDirName + str(count).zfill(6)+'.jpg')
print('图片提取结束')
camera.release()

可得到如下图像文件:

2. 安装labelme

假定你已经安装好了anaconda,直接在prompt中新建labelme环境:conda create -n labelme python=3.8

建好后,conda activate labelme进入labelme环境

然后,安装labelme,pip install labelme即可

3.利用labelme进行标注

启动labelme,输入命令labelme即可

进入界面

具体操作流程,详见B站视频即可

相关推荐
速易达网络4 小时前
低空飞行仿真与少儿编程的结合
无人机
无忧智库5 小时前
深度解读《某低空经济试验区“十五五”通用航空机场与无人机物流网络初步设计方案》:构建未来低空经济数字底座的全景蓝图
网络·无人机
AI小怪兽9 小时前
基于YOLO11的航空安保与异常无人机检测系统(Python源码+数据集+Pyside6界面)
开发语言·人工智能·python·yolo·计算机视觉·无人机
强盛小灵通专卖员13 小时前
airsim无人机仿真深度强化学习自动避障辅导
人工智能·无人机·sci·深度强化学习·airsim·自动避障·小论文
测绘小沫-北京云升智维13 小时前
大疆无人机常见故障提示及应对指南
经验分享·无人机
moonsims16 小时前
地下空间机器狗无线通信解决方案-通感算一体AIBrainBox-UGV:构建多层次、高韧性的生存性网络,适合工业及救援场景
网络·无人机
云卓SKYDROID17 小时前
工业吊舱图像采集与增强模块解析
人工智能·数码相机·计算机视觉·无人机·高科技·云卓科技
moonsims1 天前
波士顿动力Auto-Connect-复杂环境下机器人连接解决方案
服务器·无人机
云卓SKYDROID2 天前
工业遥控器光纤模块技术解析
无人机·遥控器·知识科普·高科技·云卓科技
AI浩2 天前
SPDC-YOLO:基于改进YOLOv8的高效无人机航拍图像小目标检测网络
yolo·目标检测·无人机