基于深度强化学习的无人机自主感知−规划−控制策略作者:吕茂隆, 丁晨博, 韩浩然, 段海滨摘要:近年来, 随着深度强化学习(DRL)方法快速发展, 其在无人机(UAV)自主导航上的应用也受到越来越广泛的关注. 然而, 面对复杂未知的环境, 现存的基于DRL的UAV自主导航算法常受限于对全局信息的依赖和特定训练环境的约束, 极大地限制了其在各种场景中的应用潜力. 为解决上述问题, 提出多尺度输入用于平衡感受野与状态维度, 以及截断操作来使智能体能够在扩张后的环境中运行. 此外, 构建自主感知−规划−控制架构, 赋予UAV在多样复杂环境中自主导航的能力.