基于无人机 RTK 和 yolov8 的目标定位算法

目录

背景

算法思路

代码实现

验证


背景

在城市交通巡检中如何进行车辆违停判断很重要,一个方法是通过精确坐标判断车辆中心是否位于违停框中,我们假设无人机坐标已知,并且无人机云台镜头垂直地面朝下,可根据图像分辨率、无人机参数、无人机坐标、识别目标位置等信息,解算出识别目标的具体坐标。

无人机采用大疆机场 2 自带的 Matrice3TD无人机,参数如下:

水平视场角:84 °

图像分辨率:800 X 600

无人机自带 RTK ,实时测定无人机当前坐标信息,包括经度纬度相对高度 以及航向角

算法思路

通过水平视场角和高度计算出影像实际长度,再由实际长度和影像分辨率计算单个栅格长度,再由yolo 目标识别矩形框计算中心栅格坐标,并计算与无人机地面投影点的栅格坐标差,从而计算实际矢量坐标差,再由航向角计算出目标中心最终坐标。

简要解算:

注意,本算法仅考虑无人机镜头垂直朝下的情况!!!

代码实现

参数定义:

python 复制代码
# 参数
Horizontal_view = 84  # 无人机水平视场角
Resolution_X = 800   # X 轴栅格数
Resolution_Y = 600   # Y 轴栅格数
R = 6371000  # 地球半径(米)

获取单个像素长度:

python 复制代码
def calculate_pixel_length(h):
    """
    计算像素长度
    :param h: 无人机相对高度(米)
    :return: 像素长度(米)
    """
    # 计算水平视场角的一半
    half_horizontal_view = Horizontal_view / 2.0

    # 图像长度
    l = 2.0 * h * math.tan(math.radians(half_horizontal_view))

    distance = l / Resolution_X
    return distance

可利用水平视场角、分辨率和高度 h计算

解算目标坐标:

python 复制代码
def calculate_target_coordinates(x1, y1, x2, y2, heading_angle, longitude, latitude, h):
    """
    计算目标坐标,仅考虑目标位于北半球、东半球
    :param x1: 目标左上角 X 轴像素位置
    :param y1: 目标左上角 Y 轴像素位置
    :param x2: 目标右下角 X 轴像素位置
    :param y2: 目标右下角 Y 轴像素位置
    :param heading_angle: 无人机航向角(度)
    :param longitude: 无人机经度(度)
    :param latitude: 无人机纬度(度)
    :param h: 无人机相对高度(米)
    :return: 目标坐标 (x, y)
    """
    pixel_length = calculate_pixel_length(h)
    # 目标中心点像素坐标
    target_x = (x1 + x2) / 2.0
    target_y = (y1 + y2) / 2.0

    # 无人机像素中心坐标
    drone_x = Resolution_X / 2.0
    drone_y = Resolution_Y / 2.0

    # 计算相对于中心点的像素位移,yolo 识别输出图像的坐标轴向下为 y 轴增加,需反转,不然后面坐标系无法转换
    raster_dx = target_x - drone_x
    raster_dy = drone_y - target_y

    # 实际距离
    vector_dx = raster_dx * pixel_length
    vector_dy = raster_dy * pixel_length

    # 图像坐标系转为地理坐标系,计算地理坐标系的分量,可理解为将图像坐标系逆时针旋转到与地理坐标系重合
    dx = vector_dx * math.cos(math.radians(heading_angle)) - vector_dy * math.sin(math.radians(heading_angle))
    dy = vector_dx * math.sin(math.radians(heading_angle)) + vector_dy * math.cos(math.radians(heading_angle))

    # 解算坐标,一纬度约为111km,一经度则还需乘cos(纬度)
    target_lon = longitude + (180 / math.pi) * (dx / (R * math.cos(latitude)))
    target_lat = latitude + (180 / math.pi) * (dy / R)

    # 返回目标坐标
    return target_lon, target_lat

计算出目标相对于中心点的位移后,需要将 y 轴反转,因为图像 y轴正方向是朝下的,与地理坐标系相反,然后再将图像坐标系作坐标系的旋转,旋转到地理坐标系上,从而能计算出目标点位移对于地理坐标系的分量,从而解算目标点坐标。

验证

python 复制代码
if __name__ == '__main__':
    x, y = calculate_target_coordinates(10, 20, 20, 30, 20, 115.89, 28.68, 5)

    print(f"Target Coordinates: Longitude={x}, Latitude={y}")

输出结果:

大家可以自行验证下,理论上是没有问题的。

至于调用,在 yolo 识别后,会输出 bbox 等参数,然后对每个帧循环目标再调用此算法即可。

感谢观看!!!

相关推荐
GIS数据转换器4 小时前
空天地一体化边坡监测及安全预警系统
大数据·人工智能·安全·机器学习·3d·无人机
智驱力人工智能7 小时前
仓库园区无人机烟雾识别:构建立体化、智能化的早期火灾预警体系 无人机烟雾检测 无人机动态烟雾分析AI系统 无人机辅助火灾救援系统
人工智能·opencv·算法·目标检测·架构·无人机·边缘计算
云卓SKYDROID8 小时前
无人机速度控制模块技术解析
无人机·控制模块·技术解析·高科技·云卓科技
思通数据8 小时前
市政道路无人机巡检:AI视觉技术的应用与挑战
人工智能·深度学习·安全·目标检测·机器学习·无人机·语音识别
智驱力人工智能8 小时前
森林防火无人机火焰监测系统 构建“天空地”一体化智能防火体系 无人机火焰检测,支持红色火焰检测 城市高层建筑无人机火焰识别
人工智能·深度学习·opencv·算法·目标检测·无人机·边缘计算
Coovally AI模型快速验证8 小时前
无人机低空视觉数据集全景解读:从单机感知到具身智能的跨
人工智能·深度学习·目标检测·机器学习·自动驾驶·无人机
dlhto8 小时前
YOLOv8 模型权重格式详解
yolo·deep learning
Echo_NGC22379 小时前
【传统JSCC+Deep JSCC】联合信源信道编码完全指南
人工智能·python·深度学习·神经网络·conda·无人机·jscc
Dev7z9 小时前
基于YOLOv11的独居老人摔倒识别设计与实现(数据集+UI界面+训练代码+数据分析)
yolo