基于变异混合蛙跳算法的车间调度最优化matlab仿真,可以任意调整工件数和机器数,输出甘特图

目录

1.程序功能描述

2.测试软件版本以及运行结果展示

3.核心程序

4.本算法原理

[4.1 车间调度问题(JSSP)描述](#4.1 车间调度问题(JSSP)描述)

[4.2 蛙跳算法(SFLA)基本原理](#4.2 蛙跳算法(SFLA)基本原理)

[4.2.1 初始化](#4.2.1 初始化)

[4.2.2 局部搜索](#4.2.2 局部搜索)

[4.2.3 全局信息交换](#4.2.3 全局信息交换)

[4.2.4 变异策略](#4.2.4 变异策略)

[4.2.5 终止条件](#4.2.5 终止条件)

5.完整程序


1.程序功能描述

变异混合蛙跳算法的车间调度最优化,可以任意调整工件数和机器数,输出甘特图。

2.测试软件版本以及运行结果展示

MATLAB2022a版本运行

3.核心程序

.........................................................

%初始种群
Pop_n = round(sqrt(Npop));                  
Pop_s = ceil(Npop/Pop_n);               
Npop  = Pop_s*Pop_n;                      

[Xs,ff] = func_initial(T,Npop);

fout = zeros(Iters,1);                                      
for i = 1:Iters
    i
    [ff,I] = sort(ff,'descend');
    Xs     = Xs(I,:);
    Pmax   = Xs(1,:);
    Fmax   = ff(1);

    for j = 1:Pop_n
        Pops       = Xs(j:Pop_n:end,:);            % 子种群
        ff_        = ff(j:Pop_n:end,:);
        [Popss,F3] = func_FLA(T,Pops,ff_,Pmax,Fmax);

        Xs(j:Pop_n:end,:) = Popss;
        ff(j:Pop_n:end,:) = F3;
    end

    [Xsolve,ybest]  = func_Eval(Xs,ff);                      % 进化结果评估
        

    fout(i) = -mean(ybest);
end


 

figure
[Fouts,Etime] = func_fitness(T,Xsolve);
Stime         = Etime-T(:,Xsolve); % 开始时间
fval          = -Fouts;
M1            = size(T,1);    % 行数M1为机器数
NX            = length(Xsolve);    % 列数NX为工件数
for i = 1:M1
    for j = 1:NX
        x1 = Stime(i,j);
        x2 = Etime(i,j);
        y1 = i-1;
        y2 = i-0.05;
        fill([x1 x2 x2 x1],[y1 y1 y2 y2],[0,1,0]);
        text(x1*0.55+x2*0.45,(y1+y2)/2,[num2str(Xsolve(j))],'Fontsize',8,'Color','k');
        hold on;
    end
    text(-0.8,(y1+y2)/2,['机器 ',num2str(i)],'Fontsize',8,'Color','k');
end

hold off; 
xlabel('时间'); 
set(gca,'ytick',[],'YDir','reverse','Color',[1 1 1]);
axis([0 fval 0 M1-0.05]);
title(['工件数:',num2str(NX),', 机器数:',num2str(M1),', 最优值:',num2str(fval)]);


figure;
plot(1:Iters,fout(1:end),'b-o'); 
grid on;
xlabel('进化代数'); 
ylabel('适应度');
21

4.本算法原理

基于变异混合蛙跳算法的车间调度最优化是一种结合了蛙跳算法(Shuffled Frog Leaping Algorithm, SFLA)和变异策略的优化方法,用于解决车间调度问题(Job-Shop Scheduling Problem, JSSP)。

4.1 车间调度问题(JSSP)描述

给定一个车间,其中有 (n) 个作业(Jobs)和 (m) 台机器(Machines)。每个作业由一系列工序(Operations)组成,每个工序必须在特定的机器上完成,且每个作业的工序顺序是预先确定的。JSSP的目标是为每个机器找到一个作业工序的序列,使得所有作业的总完成时间最小化。

4.2 蛙跳算法(SFLA)基本原理

蛙跳算法是一种群体智能优化算法,模拟了蛙群在寻找食物时的跳跃行为。在SFLA中,蛙群被分为多个子群,每个子群内的蛙通过局部搜索和信息交换寻找最优解。VHSFLA在基本SFLA的基础上引入了变异策略,以增强算法的全局搜索能力和避免陷入局部最优解。

4.2.1 初始化

  • 初始化蛙群:随机生成一定数量的蛙(解),每个蛙代表一个可能的作业调度方案。
  • 分组:将蛙群分为多个子群。

4.2.2 局部搜索

在每个子群内,蛙按照一定的规则进行跳跃(即解的更新)。跳跃的步长和方向通常由当前蛙的位置、子群内最优蛙的位置以及全局最优蛙的位置决定。

4.2.3 全局信息交换

经过一定次数的局部搜索后,子群内的蛙会与其他子群的蛙进行信息交换,以促进全局搜索。

4.2.4 变异策略

为了增强算法的全局搜索能力,VHSFLA引入了变异策略。变异操作可以随机地改变蛙的某些基因(即作业工序的顺序),从而产生新的解。

4.2.5 终止条件

算法会在满足一定条件时终止,如达到最大迭代次数或解的质量满足要求。

5.完整程序

VVV

相关推荐
机器学习之心10 小时前
Bayes-GRU-Attention的数据多特征分类预测Matlab实现
matlab·分类·gru
叶庭云10 小时前
Matlab 和 R 语言的数组索引都是从 1 开始,并且是左闭右闭的
matlab·编程语言·r·数组索引·从 1 开始
γ..13 小时前
基于MATLAB的图像增强
开发语言·深度学习·神经网络·学习·机器学习·matlab·音视频
IT猿手16 小时前
基于PWLCM混沌映射的麋鹿群优化算法(Elk herd optimizer,EHO)的多无人机协同路径规划,MATLAB代码
算法·elk·机器学习·matlab·无人机·聚类·强化学习
超级大咸鱼1 天前
CW信号的正交解调
matlab·verilog·fpga·数字信号·解调·正交解调·cw
乌恩大侠1 天前
画图,matlab,
开发语言·matlab
吐泡泡科技1 天前
无人机视频传输系统的通信能耗优化
matlab·通信能耗·无人机通信
达不溜方2 天前
基于MATLAB的图像增强
开发语言·人工智能·学习·机器学习·matlab·云服务·效率
信号处理学渣2 天前
matlab的一些时间函数【转】
matlab
IT猿手2 天前
SDMTSP:黑翅鸢算法(Black-winged kite algorithm,BKA)求解单仓库多旅行商问题,可以更改数据集和起点(MATLAB代码)
人工智能·深度学习·机器学习·matlab·无人机·智能优化算法