迁移学习实现图片分类任务

导入工具包

python 复制代码
import time
import os

import numpy as np
from tqdm import tqdm

import torch
import torchvision
import torch.nn as nn
import torch.nn.functional as F

import matplotlib.pyplot as plt
%matplotlib inline

# 忽略烦人的红色提示
import warnings
warnings.filterwarnings("ignore")

获取计算硬件

python 复制代码
# 有 GPU 就用 GPU,没有就用 CPU
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
print('device', device)

图片预处理

python 复制代码
from torchvision import transforms

# 训练集图像预处理:缩放裁剪、图像增强、转 Tensor、归一化
train_transform = transforms.Compose([transforms.RandomResizedCrop(224),
                                      transforms.RandomHorizontalFlip(),
                                      transforms.ToTensor(),
                                      transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
                                     ])

# 测试集图像预处理-RCTN:缩放、裁剪、转 Tensor、归一化
test_transform = transforms.Compose([transforms.Resize(256),
                                     transforms.CenterCrop(224),
                                     transforms.ToTensor(),
                                     transforms.Normalize(
                                         mean=[0.485, 0.456, 0.406], 
                                         std=[0.229, 0.224, 0.225])
                                    ])

这里对train训练集和text集的处理不同,几个transforms的操作通过compose进行整合。

载入图片分类数据集

python 复制代码
# 数据集文件夹路径
dataset_dir = 'fruit30_split'

train_path = os.path.join(dataset_dir, 'train')
test_path = os.path.join(dataset_dir, 'val')
print('训练集路径', train_path)
print('测试集路径', test_path)

from torchvision import datasets

# 载入训练集
train_dataset = datasets.ImageFolder(train_path, train_transform)

# 载入测试集
test_dataset = datasets.ImageFolder(test_path, test_transform)


print('训练集图像数量', len(train_dataset))
print('类别个数', len(train_dataset.classes))
print('各类别名称', train_dataset.classes)

print('测试集图像数量', len(test_dataset))
print('类别个数', len(test_dataset.classes))
print('各类别名称', test_dataset.classes)

datasets下的ImageFolder,可以直接构建数据集。

类别与索引号一一对应

python 复制代码
class_names = train_dataset.classes
n_class = len(class_names)


# 映射关系:类别 到 索引号
train_dataset.class_to_idx

定义数据加载器Dataloader,dataloader用于给模型喂数据。

python 复制代码
from torch.utils.data import DataLoader

BATCH_SIZE = 32

# 训练集的数据加载器
train_loader = DataLoader(train_dataset,
                          batch_size=BATCH_SIZE,
                          shuffle=True,
                          num_workers=4
                         )

# 测试集的数据加载器
test_loader = DataLoader(test_dataset,
                         batch_size=BATCH_SIZE,
                         shuffle=False,
                         num_workers=4
                        )

查看一个batch的图像与标注

python 复制代码
# DataLoader 是 python生成器,每次调用返回一个 batch 的数据
images, labels = next(iter(train_loader))

images. Shape
#torch.Size([32, 3, 224, 224])
labels
#tensor([11, 19,  3, 25, 29, 13, 21, 18, 11,  1, 13, 15, 13,  0, 15, 25,  0,  7,11, 10,  9,  6, 26,  2, 11, 10, 29, 29, 15,  8, 19,  8])

迁移学习范式

导入训练所用的工具包

python 复制代码
from torchvision import models
import torch.optim as optim
python 复制代码
model = models.resnet18(pretrained=True) # 载入预训练模型
# 修改全连接层,使得全连接层的输出与当前数据集类别数对应
# 新建的层默认 requires_grad=True
model.fc = nn.Linear(model.fc.in_features, n_class)
model.fc
Linear(in_features=512, out_features=30, bias=True)
# 只微调训练最后一层全连接层的参数,其它层冻结
optimizer = optim.Adam(model.fc.parameters())

采用第一种迁移学习的方式,优化器采用的是Adam的优化器。

训练配置

python 复制代码
model = model.to(device)

# 交叉熵损失函数
criterion = nn.CrossEntropyLoss() 

# 训练轮次 Epoch
EPOCHS = 20

模拟一个batch的训练

这里着重注意反向传播三部曲

python 复制代码
# 反向传播"三部曲"
optimizer.zero_grad() # 清除梯度
loss.backward() # 反向传播
optimizer.step() # 优化更新

运行完整训练

python 复制代码
# 遍历每个 EPOCH
for epoch in tqdm(range(EPOCHS)):

    model. Train() #每次开始前将模型设置为训练模式

    for images, labels in train_loader:  # 获取训练集的一个 batch,包含数据和标注
        images = images.to(device)
        labels = labels.to(device)

        outputs = model(images)           # 前向预测,获得当前 batch 的预测结果
        loss = criterion(outputs, labels) # 比较预测结果和标注,计算当前 batch 的交叉熵损失函数
        
        optimizer.zero_grad()
        loss.backward()                   # 损失函数对神经网络权重反向传播求梯度
        optimizer.step()                  # 优化更新神经网络权重

在测试集上进行初步测试

python 复制代码
model.eval() #模型设置为测试模式
with torch.no_grad(): #不再回传梯度
    correct = 0
    total = 0
    for images, labels in tqdm(test_loader): # 获取测试集的一个 batch,包含数据和标注
        images = images.to(device)
        labels = labels.to(device)
        outputs = model(images)              # 前向预测,获得当前 batch 的预测置信度
        _, preds = torch.max(outputs, 1)     # 获得最大置信度对应的类别,作为预测结果
        total += labels.size(0)
        correct += (preds == labels).sum()   # 预测正确样本个数,如果预测类别等于标注类别

    print('测试集上的准确率为 {:.3f} %'.format(100 * correct / total))

保存模型

python 复制代码
torch.save(model, 'checkpoint/fruit30_pytorch_C1.pth')
相关推荐
Blossom.1182 小时前
使用Python和Scikit-Learn实现机器学习模型调优
开发语言·人工智能·python·深度学习·目标检测·机器学习·scikit-learn
DFminer4 小时前
【LLM】fast-api 流式生成测试
人工智能·机器人
郄堃Deep Traffic4 小时前
机器学习+城市规划第十四期:利用半参数地理加权回归来实现区域带宽不同的规划任务
人工智能·机器学习·回归·城市规划
GIS小天5 小时前
AI+预测3D新模型百十个定位预测+胆码预测+去和尾2025年6月7日第101弹
人工智能·算法·机器学习·彩票
阿部多瑞 ABU5 小时前
主流大语言模型安全性测试(三):阿拉伯语越狱提示词下的表现与分析
人工智能·安全·ai·语言模型·安全性测试
cnbestec5 小时前
Xela矩阵三轴触觉传感器的工作原理解析与应用场景
人工智能·线性代数·触觉传感器
不爱写代码的玉子5 小时前
HALCON透视矩阵
人工智能·深度学习·线性代数·算法·计算机视觉·矩阵·c#
sbc-study5 小时前
PCDF (Progressive Continuous Discrimination Filter)模块构建
人工智能·深度学习·计算机视觉
EasonZzzzzzz6 小时前
计算机视觉——相机标定
人工智能·数码相机·计算机视觉
猿小猴子6 小时前
主流 AI IDE 之一的 Cursor 介绍
ide·人工智能·cursor