2024-01-06-AI 大模型全栈工程师 - 机器学习基础

摘要

2024-01-06 阴 杭州 晴

本节简介:

a. 数学模型&算法名词相关概念;

b. 学会数学建模相关知识;

c. 学会自我思考,提升认知,不要只会模仿;

课程内容

1. Fine-Tuning 有什么作用?

a. 什么是模型训练(Training)

b. 什么是模型预训练(Pre-Training)

c. 微调(Fine-Tuning)

d. 轻量化微调(Parameter Efficient Fine-Tuning,PEFT)

2. 什么是模型?

a. 模型是一个函数(一种逻辑实现)

a.1 接受一定范围内的参数;

a.2 预测输出;

b. 模型训练是什么?

b.1 我们有一系列的入参,比如年龄,收入,性格等指标;

b.2 基于调研和记录采集到了一定参数指标下的观测数据;

b.3 求解二者关系的过程,就是数学建模,不断求解优化的过程就是模型训练;

3. 什么是模型训练?
4. 求解器

为了训练过程取得更好的收益,人们设计了很多复杂的求解器;

重点: 最常用的求解器是 Adam || AdamW

5. 常用的损失函数

a. 两个数值的差距: Min Square Error

b. 两个向量之间的(欧式)距离

c. 两个向量之间的夹角(余弦距离)

d. 概率分支之间的差异: 交叉熵

备注: 损失函数之间可以组合使用,例如预先定义的权重也叫超参;

6. 基于 PyTorch 训练一个最简单的神经网络

代码通过 ChatGPT 自行学习;

7. 自然语言处理常见的网络结构

a. 文本卷积神经网络 TextCNN

b. 循环神经网络 RNN

简易的 RNN 有很多问题,最大的问题就是随着序列长度的增加,将会出现梯度消失或者梯度爆炸的现象。

备注: LSTM 和 GRU 通过 [门] 来控制上下文的状态被记住或是遗忘,同时防止梯度消失或者梯度爆炸。

8. Transformer 江山一统

总结

小结: 机器学习基础,任重道远,但是基本的概念早就了解了,反复碎碎念。

相关推荐
我想睡觉2613 分钟前
Python训练营打卡DAY27
开发语言·python·机器学习
蹦蹦跳跳真可爱5893 分钟前
Python----神经网络(基于DNN的风电功率预测)
人工智能·pytorch·python·深度学习·神经网络·dnn
Jackson@ML6 分钟前
一分钟了解机器学习
人工智能·机器学习
四万二千12 分钟前
5月16日复盘-目标检测开端
人工智能·目标检测·计算机视觉
带娃的IT创业者16 分钟前
《AI大模型应知应会100篇》第65篇:基于大模型的文档问答系统实现
人工智能
TGITCIC28 分钟前
智脑进化:神经网络如何从单层感知机迈向深度学习新纪元
人工智能·深度学习·神经网络
妄想成为master42 分钟前
计算机视觉----常见卷积汇总
人工智能·计算机视觉
jndingxin1 小时前
OpenCV CUDA 模块中用于在 GPU 上计算矩阵中每个元素的绝对值或复数的模函数abs()
人工智能·opencv
Code哈哈笑1 小时前
【机器学习】支持向量回归(SVR)从入门到实战:原理、实现与优化指南
人工智能·算法·机器学习·回归·svm
拓端研究室TRL1 小时前
Python与MySQL网站排名数据分析及多层感知机MLP、机器学习优化策略和地理可视化应用|附AI智能体数据代码
人工智能·python·mysql·机器学习·数据分析