Word Search

Problem

Given an m x n grid of characters board and a string word, return true if word exists in the grid.

The word can be constructed from letters of sequentially adjacent cells, where adjacent cells are horizontally or vertically neighboring. The same letter cell may not be used more than once.

Example 1:

复制代码
Input: board = [["A","B","C","E"],["S","F","C","S"],["A","D","E","E"]], word = "ABCCED"
Output: true

Example 2:

复制代码
Input: board = [["A","B","C","E"],["S","F","C","S"],["A","D","E","E"]], word = "SEE"
Output: true

Example 3:

复制代码
Input: board = [["A","B","C","E"],["S","F","C","S"],["A","D","E","E"]], word = "ABCB"
Output: false

Intuition

The problem involves determining whether a given word exists in the provided grid. The word can be constructed from letters of sequentially adjacent cells, where adjacent cells are horizontally or vertically neighboring. Additionally, the same letter cell may not be used more than once. This problem can be solved using a depth-first search (DFS) approach.

Approach

DFS Function:

Implement a DFS function (dfs) that takes three parameters: the current row r, the current column c, and the index i representing the position in the word.

In the base case:

If i is equal to the length of the word, return True (the word has been found).

If the current cell (r, c) is out of bounds or has already been visited or contains a letter different from the corresponding letter in the word, return False.

Mark the current cell as visited by adding (r, c) to the set path.

Recursively call the dfs function for adjacent cells in all four directions (up, down, left, right) with the updated index i.

After the recursive calls, remove (r, c) from the set path to backtrack.

Iterate Over Grid:

Iterate over each cell in the grid and call the dfs function for each cell with the starting index i set to 0.

If the dfs function returns True for any cell, the word exists in the grid, and the function can return True.

Return Result:

If no cell results in a True return from the dfs function, return False, indicating that the word does not exist in the grid.

Complexity

  • Time complexity:

The time complexity is O(M * N * 4^L), where M is the number of rows, N is the number of columns, and L is the length of the word. The factor of 4^L accounts for the branching factor of the DFS.

  • Space complexity:

The space complexity is O(L), where L is the length of the word. This is due to the space required for the recursion stack and the set path used to track visited cells.

Code

复制代码
class Solution:
    def exist(self, board: List[List[str]], word: str) -> bool:
        rows, cols = len(board), len(board[0])
        path = set()

        def dfs(r, c, i):
            if i == len(word):
                return True
            if (r < 0 or c < 0 or
                r >= rows or c >= cols or
                word[i] != board[r][c] or (r, c) in path):
                return False

            path.add((r, c))
            res = (dfs(r + 1, c, i + 1) or
                    dfs(r - 1, c, i + 1) or
                    dfs(r, c - 1, i + 1) or
                    dfs(r, c + 1, i + 1))
                
            path.remove((r, c))
            return res

        for r in range(rows):
            for c in range(cols):
                if dfs(r, c, 0): return True
        return False
相关推荐
hn小菜鸡1 小时前
LeetCode 377.组合总和IV
数据结构·算法·leetcode
Deepoch1 小时前
Deepoc 大模型:无人机行业的智能变革引擎
人工智能·科技·算法·ai·动态规划·无人机
heimeiyingwang9 天前
【深度学习加速探秘】Winograd 卷积算法:让计算效率 “飞” 起来
人工智能·深度学习·算法
时空自由民.9 天前
C++ 不同线程之间传值
开发语言·c++·算法
ai小鬼头9 天前
AIStarter开发者熊哥分享|低成本部署AI项目的实战经验
后端·算法·架构
小白菜3336669 天前
DAY 37 早停策略和模型权重的保存
人工智能·深度学习·算法
zeroporn9 天前
以玄幻小说方式打开深度学习词嵌入算法!! 使用Skip-gram来完成 Word2Vec 词嵌入(Embedding)
人工智能·深度学习·算法·自然语言处理·embedding·word2vec·skip-gram
亮亮爱刷题9 天前
飞往大厂梦之算法提升-7
数据结构·算法·leetcode·动态规划
_周游9 天前
【数据结构】_二叉树OJ第二弹(返回数组的遍历专题)
数据结构·算法
双叶8369 天前
(C语言)Map数组的实现(数据结构)(链表)(指针)
c语言·数据结构·c++·算法·链表·哈希算法