Word Search

Problem

Given an m x n grid of characters board and a string word, return true if word exists in the grid.

The word can be constructed from letters of sequentially adjacent cells, where adjacent cells are horizontally or vertically neighboring. The same letter cell may not be used more than once.

Example 1:

复制代码
Input: board = [["A","B","C","E"],["S","F","C","S"],["A","D","E","E"]], word = "ABCCED"
Output: true

Example 2:

复制代码
Input: board = [["A","B","C","E"],["S","F","C","S"],["A","D","E","E"]], word = "SEE"
Output: true

Example 3:

复制代码
Input: board = [["A","B","C","E"],["S","F","C","S"],["A","D","E","E"]], word = "ABCB"
Output: false

Intuition

The problem involves determining whether a given word exists in the provided grid. The word can be constructed from letters of sequentially adjacent cells, where adjacent cells are horizontally or vertically neighboring. Additionally, the same letter cell may not be used more than once. This problem can be solved using a depth-first search (DFS) approach.

Approach

DFS Function:

Implement a DFS function (dfs) that takes three parameters: the current row r, the current column c, and the index i representing the position in the word.

In the base case:

If i is equal to the length of the word, return True (the word has been found).

If the current cell (r, c) is out of bounds or has already been visited or contains a letter different from the corresponding letter in the word, return False.

Mark the current cell as visited by adding (r, c) to the set path.

Recursively call the dfs function for adjacent cells in all four directions (up, down, left, right) with the updated index i.

After the recursive calls, remove (r, c) from the set path to backtrack.

Iterate Over Grid:

Iterate over each cell in the grid and call the dfs function for each cell with the starting index i set to 0.

If the dfs function returns True for any cell, the word exists in the grid, and the function can return True.

Return Result:

If no cell results in a True return from the dfs function, return False, indicating that the word does not exist in the grid.

Complexity

  • Time complexity:

The time complexity is O(M * N * 4^L), where M is the number of rows, N is the number of columns, and L is the length of the word. The factor of 4^L accounts for the branching factor of the DFS.

  • Space complexity:

The space complexity is O(L), where L is the length of the word. This is due to the space required for the recursion stack and the set path used to track visited cells.

Code

复制代码
class Solution:
    def exist(self, board: List[List[str]], word: str) -> bool:
        rows, cols = len(board), len(board[0])
        path = set()

        def dfs(r, c, i):
            if i == len(word):
                return True
            if (r < 0 or c < 0 or
                r >= rows or c >= cols or
                word[i] != board[r][c] or (r, c) in path):
                return False

            path.add((r, c))
            res = (dfs(r + 1, c, i + 1) or
                    dfs(r - 1, c, i + 1) or
                    dfs(r, c - 1, i + 1) or
                    dfs(r, c + 1, i + 1))
                
            path.remove((r, c))
            return res

        for r in range(rows):
            for c in range(cols):
                if dfs(r, c, 0): return True
        return False
相关推荐
呼啸长风11 分钟前
漫谈散列函数
算法
NAGNIP15 分钟前
彻底搞懂 RoPE:位置编码的新范式
算法
NAGNIP22 分钟前
一文搞懂位置编码Positional Encoding
算法
Ghost-Face1 小时前
关于模运算
算法
SunnyKriSmile1 小时前
指针实现数组的逆序存放并输出
c语言·算法·排序算法·数组逆序存放
Y4090011 小时前
Java算法之排序
java·数据结构·笔记·算法
sinat_286945192 小时前
AI服务器介绍
服务器·人工智能·算法·chatgpt·transformer
严文文-Chris2 小时前
【大模型量化、蒸馏、剪枝、微调小结】
算法·机器学习·剪枝
PAK向日葵3 小时前
【算法导论】MT 0823笔试题题解
算法·面试
智驱力人工智能3 小时前
安全帽检测算法如何提升工地安全管理效率
人工智能·算法·安全·边缘计算·安全帽检测·口罩检测·安全鞋检测