Word Search

Problem

Given an m x n grid of characters board and a string word, return true if word exists in the grid.

The word can be constructed from letters of sequentially adjacent cells, where adjacent cells are horizontally or vertically neighboring. The same letter cell may not be used more than once.

Example 1:

复制代码
Input: board = [["A","B","C","E"],["S","F","C","S"],["A","D","E","E"]], word = "ABCCED"
Output: true

Example 2:

复制代码
Input: board = [["A","B","C","E"],["S","F","C","S"],["A","D","E","E"]], word = "SEE"
Output: true

Example 3:

复制代码
Input: board = [["A","B","C","E"],["S","F","C","S"],["A","D","E","E"]], word = "ABCB"
Output: false

Intuition

The problem involves determining whether a given word exists in the provided grid. The word can be constructed from letters of sequentially adjacent cells, where adjacent cells are horizontally or vertically neighboring. Additionally, the same letter cell may not be used more than once. This problem can be solved using a depth-first search (DFS) approach.

Approach

DFS Function:

Implement a DFS function (dfs) that takes three parameters: the current row r, the current column c, and the index i representing the position in the word.

In the base case:

If i is equal to the length of the word, return True (the word has been found).

If the current cell (r, c) is out of bounds or has already been visited or contains a letter different from the corresponding letter in the word, return False.

Mark the current cell as visited by adding (r, c) to the set path.

Recursively call the dfs function for adjacent cells in all four directions (up, down, left, right) with the updated index i.

After the recursive calls, remove (r, c) from the set path to backtrack.

Iterate Over Grid:

Iterate over each cell in the grid and call the dfs function for each cell with the starting index i set to 0.

If the dfs function returns True for any cell, the word exists in the grid, and the function can return True.

Return Result:

If no cell results in a True return from the dfs function, return False, indicating that the word does not exist in the grid.

Complexity

  • Time complexity:

The time complexity is O(M * N * 4^L), where M is the number of rows, N is the number of columns, and L is the length of the word. The factor of 4^L accounts for the branching factor of the DFS.

  • Space complexity:

The space complexity is O(L), where L is the length of the word. This is due to the space required for the recursion stack and the set path used to track visited cells.

Code

class Solution:
    def exist(self, board: List[List[str]], word: str) -> bool:
        rows, cols = len(board), len(board[0])
        path = set()

        def dfs(r, c, i):
            if i == len(word):
                return True
            if (r < 0 or c < 0 or
                r >= rows or c >= cols or
                word[i] != board[r][c] or (r, c) in path):
                return False

            path.add((r, c))
            res = (dfs(r + 1, c, i + 1) or
                    dfs(r - 1, c, i + 1) or
                    dfs(r, c - 1, i + 1) or
                    dfs(r, c + 1, i + 1))
                
            path.remove((r, c))
            return res

        for r in range(rows):
            for c in range(cols):
                if dfs(r, c, 0): return True
        return False
相关推荐
lili-felicity几秒前
指针与数组:深入C语言的内存操作艺术
c语言·开发语言·数据结构·算法·青少年编程·c#
PengFly1233 分钟前
题解:[ABC294G] Distance Queries on a Tree
算法·lca·树状数组·dfs序
月亮邮递使light6 分钟前
代码随想录算法训练营第五十八天 | 拓扑排序精讲 dijkstra(朴素版)精讲
算法
野風_1996020120 分钟前
代码随想录第59天
算法
HappyAcmen27 分钟前
青训营-豆包MarsCode技术训练营试题解析四十八
开发语言·python·算法
码农老起34 分钟前
插入排序解析:时间复杂度、空间复杂度与优化策略
数据结构·算法·排序算法
俎树振1 小时前
深入理解与优化Java二维数组:从定义到性能提升的全面指南
java·算法
DARLING Zero two♡1 小时前
【优选算法】Sliding-Chakra:滑动窗口的算法流(上)
java·开发语言·数据结构·c++·算法
❦丿多像灬笑话、℡1 小时前
leetcode 热题100(208. 实现 Trie (前缀树))数组模拟c++
算法·leetcode·c#
hjxxlsx1 小时前
二维数组综合
c++·算法