Word Search

Problem

Given an m x n grid of characters board and a string word, return true if word exists in the grid.

The word can be constructed from letters of sequentially adjacent cells, where adjacent cells are horizontally or vertically neighboring. The same letter cell may not be used more than once.

Example 1:

复制代码
Input: board = [["A","B","C","E"],["S","F","C","S"],["A","D","E","E"]], word = "ABCCED"
Output: true

Example 2:

复制代码
Input: board = [["A","B","C","E"],["S","F","C","S"],["A","D","E","E"]], word = "SEE"
Output: true

Example 3:

复制代码
Input: board = [["A","B","C","E"],["S","F","C","S"],["A","D","E","E"]], word = "ABCB"
Output: false

Intuition

The problem involves determining whether a given word exists in the provided grid. The word can be constructed from letters of sequentially adjacent cells, where adjacent cells are horizontally or vertically neighboring. Additionally, the same letter cell may not be used more than once. This problem can be solved using a depth-first search (DFS) approach.

Approach

DFS Function:

Implement a DFS function (dfs) that takes three parameters: the current row r, the current column c, and the index i representing the position in the word.

In the base case:

If i is equal to the length of the word, return True (the word has been found).

If the current cell (r, c) is out of bounds or has already been visited or contains a letter different from the corresponding letter in the word, return False.

Mark the current cell as visited by adding (r, c) to the set path.

Recursively call the dfs function for adjacent cells in all four directions (up, down, left, right) with the updated index i.

After the recursive calls, remove (r, c) from the set path to backtrack.

Iterate Over Grid:

Iterate over each cell in the grid and call the dfs function for each cell with the starting index i set to 0.

If the dfs function returns True for any cell, the word exists in the grid, and the function can return True.

Return Result:

If no cell results in a True return from the dfs function, return False, indicating that the word does not exist in the grid.

Complexity

  • Time complexity:

The time complexity is O(M * N * 4^L), where M is the number of rows, N is the number of columns, and L is the length of the word. The factor of 4^L accounts for the branching factor of the DFS.

  • Space complexity:

The space complexity is O(L), where L is the length of the word. This is due to the space required for the recursion stack and the set path used to track visited cells.

Code

复制代码
class Solution:
    def exist(self, board: List[List[str]], word: str) -> bool:
        rows, cols = len(board), len(board[0])
        path = set()

        def dfs(r, c, i):
            if i == len(word):
                return True
            if (r < 0 or c < 0 or
                r >= rows or c >= cols or
                word[i] != board[r][c] or (r, c) in path):
                return False

            path.add((r, c))
            res = (dfs(r + 1, c, i + 1) or
                    dfs(r - 1, c, i + 1) or
                    dfs(r, c - 1, i + 1) or
                    dfs(r, c + 1, i + 1))
                
            path.remove((r, c))
            return res

        for r in range(rows):
            for c in range(cols):
                if dfs(r, c, 0): return True
        return False
相关推荐
元亓亓亓35 分钟前
LeetCode热题100--79. 单词搜索
算法·leetcode·职场和发展
司铭鸿1 小时前
化学式解析的算法之美:从原子计数到栈的巧妙运用
linux·运维·服务器·算法·动态规划·代理模式·哈希算法
ekprada2 小时前
DAY 18 推断聚类后簇的类型
算法·机器学习·支持向量机
生信大表哥2 小时前
Python单细胞分析-基于leiden算法的降维聚类
linux·python·算法·生信·数信院生信服务器·生信云服务器
玫瑰花店2 小时前
万字C++中锁机制和内存序详解
开发语言·c++·算法
Elias不吃糖3 小时前
LeetCode每日一练(209, 167)
数据结构·c++·算法·leetcode
铁手飞鹰4 小时前
单链表(C语言,手撕)
数据结构·c++·算法·c·单链表
悦悦子a啊4 小时前
项目案例作业(选做):使用文件改造已有信息系统
java·开发语言·算法
小殊小殊4 小时前
【论文笔记】知识蒸馏的全面综述
人工智能·算法·机器学习
无限进步_4 小时前
C语言动态内存管理:掌握malloc、calloc、realloc和free的实战应用
c语言·开发语言·c++·git·算法·github·visual studio