LangChain pdf的读取以及向量数据库的使用

以下使用了3399.pdf, Rockchip RK3399 TRM Part1

python 复制代码
import ChatGLM
from langchain.chains import LLMChain
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain.chains import SimpleSequentialChain
from langchain_core.runnables import RunnablePassthrough
from operator import itemgetter
from langchain_community.document_loaders import PyPDFLoader
import ChatGLM
from langchain.chains import LLMChain
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain.chains import LLMMathChain
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_community.document_loaders import TextLoader
from langchain.text_splitter import CharacterTextSplitter
from langchain_community.vectorstores import Chroma
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.runnables import RunnableParallel, RunnablePassthrough
from langchain_community.embeddings import JinaEmbeddings

# https://jina.ai/embeddings/
# https://python.langchain.com/docs/integrations/text_embedding/jina
# demo:  https://python.langchain.com/cookbook



llm = ChatGLM.ChatGLM_LLM()
loader = PyPDFLoader("3399.pdf")
documents = loader.load_and_split()

embeddings = JinaEmbeddings(
    jina_api_key="jina_fa2c341a2f634f1381f7cfec767150caSconYmQA2XRAcVKfZ7-Zboaqeydu", model_name="jina-embeddings-v2-base-en"
)

vectorstore = Chroma.from_documents(documents, embeddings)
retriever = vectorstore.as_retriever()

template = """Answer the question based only on the following context:
{context}

Question: {question}
"""
prompt = ChatPromptTemplate.from_template(template)
llm = ChatGLM.ChatGLM_LLM()
output_parser = StrOutputParser()
setup_and_retrieval = RunnableParallel(
    {"context": retriever, "question": RunnablePassthrough()}
)
chain = setup_and_retrieval | prompt | llm | output_parser

print(chain.invoke("eFuse Function Description"))
相关推荐
m***567212 小时前
Win10下安装 Redis
数据库·redis·缓存
Warren9812 小时前
Python自动化测试全栈面试
服务器·网络·数据库·mysql·ubuntu·面试·职场和发展
kka杰13 小时前
MYSQL 表的增删查改-更新/删除
数据库·mysql
q***448114 小时前
mysql配置环境变量——(‘mysql‘ 不是内部或外部命令,也不是可运行的程序 或批处理文件解决办法)
数据库·mysql·adb
风123456789~14 小时前
【OceanBase专栏】OB租户-创建实验
数据库·笔记·oceanbase
cmcm!14 小时前
学习笔记1
数据库·笔记·学习
Zero-Talent14 小时前
MySQL初级
数据库·mysql·oracle
烟雨归来14 小时前
oracle数据文件大小异常故障处理
数据库·oracle
jenchoi41314 小时前
【2025-11-23】软件供应链安全日报:最新漏洞预警与投毒预警情报汇总
网络·数据库·安全·web安全·网络安全
auspicious航14 小时前
PostgreSQL数据库之使用 pg_waldump 和 pg_walinspect 查看 WAL 文件的内容
数据库·postgresql