LangChain pdf的读取以及向量数据库的使用

以下使用了3399.pdf, Rockchip RK3399 TRM Part1

python 复制代码
import ChatGLM
from langchain.chains import LLMChain
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain.chains import SimpleSequentialChain
from langchain_core.runnables import RunnablePassthrough
from operator import itemgetter
from langchain_community.document_loaders import PyPDFLoader
import ChatGLM
from langchain.chains import LLMChain
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain.chains import LLMMathChain
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_community.document_loaders import TextLoader
from langchain.text_splitter import CharacterTextSplitter
from langchain_community.vectorstores import Chroma
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.runnables import RunnableParallel, RunnablePassthrough
from langchain_community.embeddings import JinaEmbeddings

# https://jina.ai/embeddings/
# https://python.langchain.com/docs/integrations/text_embedding/jina
# demo:  https://python.langchain.com/cookbook



llm = ChatGLM.ChatGLM_LLM()
loader = PyPDFLoader("3399.pdf")
documents = loader.load_and_split()

embeddings = JinaEmbeddings(
    jina_api_key="jina_fa2c341a2f634f1381f7cfec767150caSconYmQA2XRAcVKfZ7-Zboaqeydu", model_name="jina-embeddings-v2-base-en"
)

vectorstore = Chroma.from_documents(documents, embeddings)
retriever = vectorstore.as_retriever()

template = """Answer the question based only on the following context:
{context}

Question: {question}
"""
prompt = ChatPromptTemplate.from_template(template)
llm = ChatGLM.ChatGLM_LLM()
output_parser = StrOutputParser()
setup_and_retrieval = RunnableParallel(
    {"context": retriever, "question": RunnablePassthrough()}
)
chain = setup_and_retrieval | prompt | llm | output_parser

print(chain.invoke("eFuse Function Description"))
相关推荐
while(1){yan}4 小时前
Spring事务
java·数据库·spring boot·后端·java-ee·mybatis
盛世宏博北京4 小时前
高效环境管控:楼宇机房以太网温湿度精准监测系统方案
开发语言·数据库·php·以太网温湿度变送器
运维行者_5 小时前
2026 技术升级,OpManager 新增 AI 网络拓扑与带宽预测功能
运维·网络·数据库·人工智能·安全·web安全·自动化
gfdhy5 小时前
【C++实战】多态版商品库存管理系统:从设计到实现,吃透面向对象核心
开发语言·数据库·c++·microsoft·毕业设计·毕设
Elastic 中国社区官方博客5 小时前
Elasticsearch:上下文工程 vs. 提示词工程
大数据·数据库·人工智能·elasticsearch·搜索引擎·ai·全文检索
小唐同学爱学习5 小时前
如何解决海量数据存储
java·数据库·spring boot·mysql
wWYy.5 小时前
详解redis(15):缓存雪崩
数据库·redis·缓存
zzcufo5 小时前
多邻国第五阶段第13部分
java·开发语言·数据库
这周也會开心6 小时前
Redis相关知识点
数据库·redis·缓存
西柚小萌新6 小时前
【人工智能:Agent】--9.1.Langchain内置中间件
langchain