LangChain pdf的读取以及向量数据库的使用

以下使用了3399.pdf, Rockchip RK3399 TRM Part1

python 复制代码
import ChatGLM
from langchain.chains import LLMChain
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain.chains import SimpleSequentialChain
from langchain_core.runnables import RunnablePassthrough
from operator import itemgetter
from langchain_community.document_loaders import PyPDFLoader
import ChatGLM
from langchain.chains import LLMChain
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain.chains import LLMMathChain
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_community.document_loaders import TextLoader
from langchain.text_splitter import CharacterTextSplitter
from langchain_community.vectorstores import Chroma
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.runnables import RunnableParallel, RunnablePassthrough
from langchain_community.embeddings import JinaEmbeddings

# https://jina.ai/embeddings/
# https://python.langchain.com/docs/integrations/text_embedding/jina
# demo:  https://python.langchain.com/cookbook



llm = ChatGLM.ChatGLM_LLM()
loader = PyPDFLoader("3399.pdf")
documents = loader.load_and_split()

embeddings = JinaEmbeddings(
    jina_api_key="jina_fa2c341a2f634f1381f7cfec767150caSconYmQA2XRAcVKfZ7-Zboaqeydu", model_name="jina-embeddings-v2-base-en"
)

vectorstore = Chroma.from_documents(documents, embeddings)
retriever = vectorstore.as_retriever()

template = """Answer the question based only on the following context:
{context}

Question: {question}
"""
prompt = ChatPromptTemplate.from_template(template)
llm = ChatGLM.ChatGLM_LLM()
output_parser = StrOutputParser()
setup_and_retrieval = RunnableParallel(
    {"context": retriever, "question": RunnablePassthrough()}
)
chain = setup_and_retrieval | prompt | llm | output_parser

print(chain.invoke("eFuse Function Description"))
相关推荐
晚霞的不甘1 小时前
揭秘 CANN 内存管理:如何让大模型在小设备上“轻装上阵”?
前端·数据库·经验分享·flutter·3d
市场部需要一个软件开发岗位1 小时前
JAVA开发常见安全问题:纵向越权
java·数据库·安全
海奥华21 小时前
mysql索引
数据库·mysql
2601_949593652 小时前
深入解析CANN-acl应用层接口:构建高效的AI应用开发框架
数据库·人工智能
javachen__2 小时前
mysql新老项目版本选择
数据库·mysql
kjkdd2 小时前
6.1 核心组件(Agent)
python·ai·语言模型·langchain·ai编程
Dxy12393102162 小时前
MySQL如何高效查询表数据量:从基础到进阶的优化指南
数据库·mysql
Dying.Light3 小时前
MySQL相关问题
数据库·mysql
蜡笔小炘3 小时前
LVS -- 利用防火墙标签(FireWall Mark)解决轮询错误
服务器·数据库·lvs
韩立学长3 小时前
基于Springboot泉州旅游攻略平台d5h5zz02(程序、源码、数据库、调试部署方案及开发环境)系统界面展示及获取方式置于文档末尾,可供参考。
数据库·spring boot·旅游