使用x86架构+Nvidia消费显卡12G显存,搭建智能终端,将大模型本地化部署,说不定是未来方向,开源交互机器人设计

1,大模型本地部署

慢慢的,1-2B的小模型也发展起来。

在消费显卡上面的显存也足够运行了。让设备在终端运行速度更快了。

服务端虽然也可以解决智能化,但是本地的优势是速度快,离线。

市面上大部分的都是基于 arm 做android 应用开发。

有个局限性就是算力不够。

但是使用x86 和消费显卡,可以解决这个问题。相对的功耗也增加了。

这些智能设备可以固定使用电源供电。

并不是要解决所有问题,只解决特殊的需要离线的速度快的智能计算场景上。

2,基于大模型的语言交互方案

基于大模型的语言处理

3,在边缘端持函数调用的模型chatglm3,qwen7b

目前有两个模型支持函数调用,chatglm3 qwen7b 都可以在本地部署。

使用 8bit 量化版本部署内存占用在 8G 左右。

之前的技术调研研究过:

使用Xinference框架,部署Qwen和ChatGLM3的大模型,支持函数调用:

https://yanghuaiyuan.blog.csdn.net/article/details/135964461

函数调用是 OpenAI GPT-4 和 GPT-3.5 Turbo 模型的高级特性,它使得模型能够根据用户指令决定是否调用相应的函数,以结构化的格式返回信息,而不是仅提供普通的文本回答。 这种整合了大型语言模型与外部工具及API的能力,显著增强了模型的应用潜力。

例如,要获取实时天气信息,ChatGPT 本身不具备实时数据;函数调用则开辟了一条通道,使得 AI 能够与外部系统互动,如接入信息检索系统、查询实时天气、执行代码等。 这使得基于大型语言模型的智能代理能够执行更为复杂的任务,大幅提升了模型的实用性和应用领域的广度。

在接下来的内容中,我们将演示如何利用 Xinference 在本地部署大语言模型 Qwen,并实现类似 OpenAI 的函数调用。此外,我们将评估 ChatGLM3 和 Qwen 在特定数据集上,函数调用的准确性, 并分析其出错的潜在原因。这些评估将帮助我们更深入地理解这些模型的能力和限制,为实际应用提供洞见。

然后就可以根据相关的,天气预报,开发特定函数接口实现了。

使用 xinference 启动成:

4,硬件设备MX3060 有12G显存

并不需要去自己制作设备,有现成的使用游戏小主机就可以。

然后再配合触摸屏实现。

还真的有这么小的MX3060显卡设备:

https://item.jd.com/10094149248405.html

再配合电容屏 10英寸1024*600触摸屏:

https://item.jd.com/44632987581.html#crumb-wrap

5,创新就是利用现有的技术创新

组合创新,对现有技术进行理解思考。

能不能有新的方案,带来不一样的体验。

为啥要在设备端部署大模型。

因为模型的运行需要大量的资源消耗,同时也存在热点问题,高峰问题。

需要海量的资源,去提高吞吐量。

但是要是模型在边缘端完成了主要的运行,就可以降低服务端的负载。

同时在边缘端也可以降低延迟,提高响应速度,也可以进行离线计算。

6,设备外形

外形设计成这样,可以使用现成的壳子,因为没有人帮忙设计外壳。

https://item.jd.com/10077452549041.html#crumb-wrap

相关推荐
三桥彭于晏1 小时前
B/S 跟C/S架构的区别
架构
夜幕龙5 小时前
iDP3复现代码数据预处理全流程(二)——vis_dataset.py
人工智能·python·机器人
小蜗牛慢慢爬行6 小时前
如何在 Spring Boot 微服务中设置和管理多个数据库
java·数据库·spring boot·后端·微服务·架构·hibernate
小扳8 小时前
微服务篇-深入了解 MinIO 文件服务器(你还在使用阿里云 0SS 对象存储图片服务?教你使用 MinIO 文件服务器:实现从部署到具体使用)
java·服务器·分布式·微服务·云原生·架构
望获linux8 小时前
赋能新一代工业机器人-望获实时linux在工业机器人领域应用案例
linux·运维·服务器·机器人·操作系统·嵌入式操作系统·工业控制
ai_lian_shuo10 小时前
四、使用langchain搭建RAG:金融问答机器人--构建web应用,问答链,带记忆功能
python·ai·金融·langchain·机器人
盛派网络小助手16 小时前
微信 SDK 更新 Sample,NCF 文档和模板更新,更多更新日志,欢迎解锁
开发语言·人工智能·后端·架构·c#
我爱C编程18 小时前
基于Qlearning强化学习的机器人路线规划matlab仿真
matlab·机器人·强化学习·路线规划·qlearning·机器人路线规划
野蛮的大西瓜18 小时前
开源呼叫中心中,如何将ASR与IVR菜单结合,实现动态的IVR交互
人工智能·机器人·自动化·音视频·信息与通信
快乐非自愿20 小时前
分布式系统架构2:服务发现
架构·服务发现