使用x86架构+Nvidia消费显卡12G显存,搭建智能终端,将大模型本地化部署,说不定是未来方向,开源交互机器人设计

1,大模型本地部署

慢慢的,1-2B的小模型也发展起来。

在消费显卡上面的显存也足够运行了。让设备在终端运行速度更快了。

服务端虽然也可以解决智能化,但是本地的优势是速度快,离线。

市面上大部分的都是基于 arm 做android 应用开发。

有个局限性就是算力不够。

但是使用x86 和消费显卡,可以解决这个问题。相对的功耗也增加了。

这些智能设备可以固定使用电源供电。

并不是要解决所有问题,只解决特殊的需要离线的速度快的智能计算场景上。

2,基于大模型的语言交互方案

基于大模型的语言处理

3,在边缘端持函数调用的模型chatglm3,qwen7b

目前有两个模型支持函数调用,chatglm3 qwen7b 都可以在本地部署。

使用 8bit 量化版本部署内存占用在 8G 左右。

之前的技术调研研究过:

使用Xinference框架,部署Qwen和ChatGLM3的大模型,支持函数调用:

https://yanghuaiyuan.blog.csdn.net/article/details/135964461

函数调用是 OpenAI GPT-4 和 GPT-3.5 Turbo 模型的高级特性,它使得模型能够根据用户指令决定是否调用相应的函数,以结构化的格式返回信息,而不是仅提供普通的文本回答。 这种整合了大型语言模型与外部工具及API的能力,显著增强了模型的应用潜力。

例如,要获取实时天气信息,ChatGPT 本身不具备实时数据;函数调用则开辟了一条通道,使得 AI 能够与外部系统互动,如接入信息检索系统、查询实时天气、执行代码等。 这使得基于大型语言模型的智能代理能够执行更为复杂的任务,大幅提升了模型的实用性和应用领域的广度。

在接下来的内容中,我们将演示如何利用 Xinference 在本地部署大语言模型 Qwen,并实现类似 OpenAI 的函数调用。此外,我们将评估 ChatGLM3 和 Qwen 在特定数据集上,函数调用的准确性, 并分析其出错的潜在原因。这些评估将帮助我们更深入地理解这些模型的能力和限制,为实际应用提供洞见。

然后就可以根据相关的,天气预报,开发特定函数接口实现了。

使用 xinference 启动成:

4,硬件设备MX3060 有12G显存

并不需要去自己制作设备,有现成的使用游戏小主机就可以。

然后再配合触摸屏实现。

还真的有这么小的MX3060显卡设备:

https://item.jd.com/10094149248405.html

再配合电容屏 10英寸1024*600触摸屏:

https://item.jd.com/44632987581.html#crumb-wrap

5,创新就是利用现有的技术创新

组合创新,对现有技术进行理解思考。

能不能有新的方案,带来不一样的体验。

为啥要在设备端部署大模型。

因为模型的运行需要大量的资源消耗,同时也存在热点问题,高峰问题。

需要海量的资源,去提高吞吐量。

但是要是模型在边缘端完成了主要的运行,就可以降低服务端的负载。

同时在边缘端也可以降低延迟,提高响应速度,也可以进行离线计算。

6,设备外形

外形设计成这样,可以使用现成的壳子,因为没有人帮忙设计外壳。

https://item.jd.com/10077452549041.html#crumb-wrap

相关推荐
云卓SKYDROID33 分钟前
除草机器人算法以及技术详解!
算法·机器人·科普·高科技·云卓科技·算法技术
W Y1 小时前
【架构-37】Spark和Flink
架构·flink·spark
Gemini19951 小时前
分布式和微服务的区别
分布式·微服务·架构
Dann Hiroaki9 小时前
GPU架构概述
架构
茶馆大橘10 小时前
微服务系列五:避免雪崩问题的限流、隔离、熔断措施
java·jmeter·spring cloud·微服务·云原生·架构·sentinel
coding侠客10 小时前
揭秘!微服务架构下,Apollo 配置中心凭啥扮演关键角色?
微服务·云原生·架构
lipviolet11 小时前
架构系列---高并发
架构
Phodal11 小时前
架构赋能 AI:知识工程推动下的软件架构数字化
人工智能·架构
袁牛逼12 小时前
电话语音机器人,是由哪些功能构成?
人工智能·自然语言处理·机器人·语音识别
TsingtaoAI14 小时前
2024.10|AI/大模型在机器人/自动驾驶/智能驾舱领域的最新应用和深度洞察
机器人·自动驾驶·ai大模型·具身智能·智能驾舱