Hive与Presto中的列转行区别

Hive与Presto列转行的区别

1、背景描述

在处理数据时,我们经常会遇到一个字段存储多个值,这时需要把一行数据转换为多行数据,形成标准的结构化数据

例如,将下面的两列数据并列转换为三行,使得codename一一对应

id code name
1 a、b、c A、B、C

Hive、Spark和Presto都提供了这种实现,但有所不同。下面通过这个案例介绍三者之间的区别及注意事项

2、Hive/Spark列转行

Hive和Spark都可以使用lateral view posexplode实现:

sql 复制代码
select id, pos1, sub_code, pos2, sub_name from tmp
lateral view posexplode(split(code,'、')) v1 as pos1, sub_code
lateral view posexplode(split(name,'、')) v2 as pos2, sub_name
where id='1' and pos1=pos2

Hive On MapReduce与Hive On Spark的执行结果如下:

id sub_code sub_name
1 a A
1 b B
1 c C

值得注意的是,lateral view posexplode会自动过滤被转换列字段值为空的数据,进而导致数据丢失

优化方案是将lateral view修改为lateral view outer后尝试

更多关于lateral view UDTF的使用见文章:传送门

3、Presto列转行

使用PrestoSQL的交叉连接cross join unnest实现:

sql 复制代码
with t1 as(
    select id,sub_code,row_number() over() rn
    from temp
    cross join unnest(split(code, '、')) as t (sub_code)
    where id='1'
),
t2 as (
    select id,sub_name,row_number() over() rn
    from temp
    cross join unnest(split(name, '、')) as t (sub_name)
    where id='1'
)
select t1.id, t1.sub_code, t2.sub_name
from t1
left join t2 
on t1.rn = t2.rn
order by t1.rn

PrestoSQL的执行结果如下:

id sub_code sub_name
1 b B
1 a A
1 c C

需要注意的是,cross join unnest不会自动过滤被转换列和转换列字段值为空的数据,因此此方式数据不会丢失

例如,当转换列字段值存在空值时:

id code name
1 a、b、c A、B

cross join unnest列转行的结果为

id sub_code sub_name
1 a A
1 c NULL
1 b B

当被转换列字段值存在空值时:

id code name
1 a、b、c NULL

cross join unnest列转行的结果为

id sub_code sub_name
1 b NULL
1 a NULL
1 c NULL
相关推荐
Edingbrugh.南空7 分钟前
Hive SQL执行流程深度解析:从CLI入口到执行计划生成
hive·hadoop·sql
Edingbrugh.南空2 小时前
Hive 性能优化:从表设计到查询执行的全链路优化
hive·hadoop
潘小磊2 小时前
高频面试之6Hive
大数据·hive·面试·职场和发展
Edingbrugh.南空2 小时前
Hive SQL 执行计划详解:从查看方法到优化应用
hive·hadoop·sql
Edingbrugh.南空6 小时前
Hive SQL:一小时快速入门指南
hive·hadoop·sql
houzhizhen19 小时前
Metastore 架构示意图和常用 SQL
hive
※尘1 天前
Hive 存储格式深度解析:从 TextFile 到 ORC,如何选对数据存储方案?
数据仓库·hive·hadoop
Azoner1 天前
开源组件hive调优
hive·hadoop·开源
2301_793069821 天前
【术语解释】网络安全((SAST, DAST, SCA, IAST),Hadoop, Spark, Hive 的关系
hive·hadoop·网络安全·spark
viperrrrrrrrrr72 天前
大数据学习(137)-大数据组件运行时角色
大数据·hive·学习·flink·spark