使用deepspeed继续训练LLAMA

目录

[1. 数据训练配置](#1. 数据训练配置)

[2. 模型载入](#2. 模型载入)

[3. 优化器设置](#3. 优化器设置)

[4. DeepSpeed 设置](#4. DeepSpeed 设置)

[5. DeepSpeed 初始化](#5. DeepSpeed 初始化)

[6. 模型训练](#6. 模型训练)


LLAMA 模型子结构:

1. 数据训练配置

利用 PyTorch 和 Transformers 库创建数据加载器,它支持单机或多机分布式训练环境下的数据加载与采样。涉及的模块包括:

  • DataLoader: 由 PyTorch 提供,用于数据集到模型的数据加载。
  • RandomSampler 和 SequentialSampler: PyTorch 提供的随机和顺序数据采样器。
  • DistributedSampler: 专为分布式训练设计的采样器。
  • default_data_collator: Transformers 库的默认数据整合器,用于批量数据处理。
  • create_pretrain_dataset: 创建预训练数据集的自定义函数。

根据 args.local_rank 的值,选择单机采样器或分布式采样器。DistributedSampler 确保每个训练节点获得唯一数据子集,而单机环境下则使用随机或顺序采样器。

2. 模型载入

通过 Transformers 库,加载并配置 LLaMA 模型及其分词器。使用 from_pretrained 方法加载预训练模型、分词器和配置。设置分词器以处理不同文本长度,并设定填充符号为 [PAD],确保填充发生在句子右侧。模型配置中也设置了句子结束和填充符号的 ID,并优化了词汇表嵌入大小以提升硬件性能。

3. 优化器设置

DeepSpeed 库提供了优化的优化器算法,如 DeepSpeedCPUAdam 和 FusedAdam,提高了大规模数据和模型训练速度。优化器设置涉及:

  • 参数分组: 通过 get_optimizer_grouped_parameters 函数实现参数分组,一组应用权重衰减,另一组不应用。
  • 优化器选择: 根据训练环境选择 DeepSpeedCPUAdam 或 FusedAdam。
  • 学习率调度: 动态调整学习率,考虑预热步骤和总训练步数。
4. DeepSpeed 设置

定义全局批次大小 (GLOBAL_BATCH_SIZE) 和每 GPU 微批次大小 (MICRO_BATCH_SIZE)。get_train_ds_config 训练配置函数包括:

  • ZeRO 优化: 减少冗余并加速训练。
  • 混合精度训练: 通过设置 fp16 字段使用 16 位浮点数。
  • 梯度裁剪: 防止梯度爆炸。
  • 混合引擎配置: 优化输出分词数量和张量大小。
  • TensorBoard 集成: 方便跟踪训练过程。

get_eval_ds_config 函数提供简洁的验证集配置,专注于模型推理。

5. DeepSpeed 初始化

初始化包括:

  • 设备确定: 检查本地 GPU 或使用 CUDA。
  • 分布式后端初始化: 使用 deepspeed.init_distributed() 同步进程。
  • 设置 DeepSpeed 配置: 根据用户参数构建训练设置。
  • 同步工作进程: 使用 torch.distributed.barrier() 确保进程同步。
  • 初始化: 通过 deepspeed.initialize 优化模型和优化器。
  • 梯度检查点: 启用时,使用 model.gradient_checkpointing_enable()。
6. 模型训练

DeepSpeed 框架下的训练步骤:

  • 训练前准备: 使用 print_rank_0 函数输出训练状态,避免多进程重复输出。
  • 训练循环: 打印周期信息,进行前向传播、梯度计算和参数更新。
  • 模型保存: 保存模型状态和配置,支持 Hugging Face 和 DeepSpeed Zero Stage 3 格式。
相关推荐
yanzhilv13 小时前
Ollama + Open WebUI
llama
喜欢吃豆2 天前
掌握本地化大语言模型部署:llama.cpp 工作流与 GGUF 转换内核全面技术指南
人工智能·语言模型·架构·大模型·llama·llama.cpp·gguf
illuspas4 天前
Ubuntu 24.04下编译支持ROCm加速的llama.cpp
linux·ubuntu·llama
缘友一世7 天前
LLama3架构原理浅浅学学
人工智能·自然语言处理·nlp·transformer·llama
我们没有完整的家8 天前
批量吞吐量实测:Llama-2-7b 昇腾 NPU 六大场景数据报告
llama
asfdsfgas8 天前
从加载到推理:Llama-2-7b 昇腾 NPU 全流程性能基准
人工智能·llama
asdfsdgss8 天前
FP16 vs INT8:Llama-2-7b 昇腾 NPU 精度性能基准报告
llama
猿代码_xiao8 天前
大模型微调完整步骤( LLama-Factory)
人工智能·深度学习·自然语言处理·chatgpt·llama·集成学习
wei_shuo10 天前
Llama-2-7b 昇腾 NPU 测评总结:核心性能数据、场景适配建议与硬件选型参考
大模型·llama·昇腾
凯子坚持 c10 天前
Llama-2-7b在昇腾NPU上的六大核心场景性能基准报告
java·开发语言·llama